scholarly journals High-Resolution DNA Melting Analysis for Simultaneous Mutation Scanning and Genotyping in Solution

2005 ◽  
Vol 51 (10) ◽  
pp. 1770-1777 ◽  
Author(s):  
Luming Zhou ◽  
Lesi Wang ◽  
Robert Palais ◽  
Robert Pryor ◽  
Carl T Wittwer

Abstract Background: High-resolution DNA melting analysis with saturation dyes for either mutation scanning of PCR products or genotyping with unlabeled probes has been reported. However, simultaneous PCR product scanning and probe genotyping in the same reaction has not been described. Methods: Asymmetric PCR was performed in the presence of unlabeled oligonucleotide probes and a saturating fluorescent DNA dye. High-resolution melting curves for samples in either capillaries (0.3 °C/s) or microtiter format (0.1 °C/s) were generated in the same containers used for amplification. Melting curves of the factor V Leiden single-nucleotide polymorphism (SNP) and several mutations in exons 10 and 11 of the cystic fibrosis transconductance regulator gene were analyzed for both PCR product and probe melting transitions. Results: Independent verification of genotype for simple SNPs was achieved by either PCR product or probe melting transitions. Two unlabeled probes in one reaction could genotype many sequence variants with simultaneous scanning of the entire PCR product. For example, analysis of both product and probe melting transitions genotyped ΔF508, ΔI507, Q493X, I506V, and F508C variants in exon 10 and G551D, G542X, and R553X variants in exon 11. Unbiased hierarchal clustering of the melting transitions identified the specific sequence variants. Conclusions: When DNA melting is performed rapidly and observed at high resolution with saturating DNA dyes, it is possible to scan for mutations and genotype at the same time within a few minutes after amplification. The method is no more complex than PCR and may reduce the need for resequencing.

2007 ◽  
Vol 2 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Jesse Montgomery ◽  
Carl T Wittwer ◽  
Robert Palais ◽  
Luming Zhou

2009 ◽  
Vol 42 (9) ◽  
pp. 892-898 ◽  
Author(s):  
Gilles Millat ◽  
Valérie Chanavat ◽  
Sophie Julia ◽  
Hervé Crehalet ◽  
Patrice Bouvagnet ◽  
...  

Gene ◽  
2013 ◽  
Vol 512 (1) ◽  
pp. 70-75 ◽  
Author(s):  
Laure Raymond ◽  
Bertrand Diebold ◽  
Céline Leroux ◽  
Hélène Maurey ◽  
Valérie Drouin-Garraud ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4875-4875
Author(s):  
Anna Shestakova ◽  
Felipe Lorenzo ◽  
Tsewang Tashi ◽  
Lucie Lanikova ◽  
Carl T Wittwer ◽  
...  

Abstract High altitude is accompanied by hypoxia. Acute and chronic hypoxia induces a number of compensatory physiological responses mediated by hypoxia-inducible factors (HIFs) that regulate erythropoiesis, iron and energy metabolism, and other essential organismal responses. Excessive HIF responses occurring at high altitude may be accompanied by morbidity (polycythemia and pulmonary hypertension) or mortality (brain and pulmonary edema). HIFs are down regulated by two principal factors, i.e. prolyl hydroxylases (PHDs) and von Hippel Lindau proteins (VHL). Tibetans have lived at 3,000-5,000 meters for approximately 20,000 years and have acquired a number of beneficial genetic adaptations which appear to prevent negative responses to hypoxia at high-altitude. Deciphering these genetic changes is crucial to improve our understanding of the underlying hypoxia-mediated response mechanisms and to develop targeted therapies. We recently identified the first Tibetan-specific mutation, PHD2D4E, caused by a missense mutation (rs186996510) in EGLN1. PHD2D4E has an allelic frequency of ~85% in Tibetans and a low Km for oxygen, accounting for the protection of Tibetans from high-altitude polycythemia. Other effects of PHD2D4E on HIF-regulated pathophysiology remain to be delineated. A 77% GC-rich area surrounds rs186996510, resulting in a low success rate of detecting the mutation by Sanger sequencing or next-generation sequencing. PHD2D4E was unreported in published whole-genome analyses of Tibetans (Xin Yi et. al. Science 2010). Here we describe a high-resolution melting assay of a small PCR product for targeted genotyping of rs186996510. The single base-pair change (G to C) is visualized by melting small amplicons in the presence of a fluorescent DNA-binding dye. Heterozygotes are differentiated from homozygous genotypes by a pronounced change in the shape of the melting curve caused by the formation of heteroduplexes. However, wild type and homozygous variants are difficult to distinguish by melting alone, and require an additional step of a second melting analysis after mixing with known wild type DNA. Upon melting these mixtures, homozygotes appear as heterozygous melting curves, while wild type genotypes will remain wild type (Figure 1). We developed and validated a high resolution melting assay for rapid genotyping of PHD2D4E suitable for population and disease association studies. In our ongoing analyses, we genotyped DNA from over 300 Tibetans residing at sea level, 1300 meters, 1730-2300 meters and 4320 meters, and are correlating the allelic frequency of PHD2D4E with hematocrit levels. The high resolution melting assay for genotyping PHD2D4E is a simple, accurate, rapid, and inexpensive approach to identify SNP-targeted mutations, especially suitable for a large number of samples such as needed for population studies, without the expense and time required for sequencing studies. Figure 1. High resolution melting analysis of rs186996510 using a 48-base a pair PCR product amplified with primers Forward 5Õ AACGCTCTCACGCCGCCATGGCCAATGA 3Õ and Reverse 5Õ GCCGGGCCCGCCGCT 3Õ. Rapid-cycle PCR amplification and melting analysis were performed in a LS32 real-time instrument. Amplicons from homozygous, heterozygous and wild-type genotypes, and a mixture of wild-type and homozygous products were melted in the presence of a saturating DNA dye (LCGreen). High resolution melting curves and derivative plot are shown. Heterozygotes, or mixed wild type and homozygous variant produce a large change in the shape of the melting curve (red) in comparison to wild-type and homozygous variant (black). Figure 1. High resolution melting analysis of rs186996510 using a 48-base a pair PCR product amplified with primers Forward 5Õ AACGCTCTCACGCCGCCATGGCCAATGA 3Õ and Reverse 5Õ GCCGGGCCCGCCGCT 3Õ. Rapid-cycle PCR amplification and melting analysis were performed in a LS32 real-time instrument. Amplicons from homozygous, heterozygous and wild-type genotypes, and a mixture of wild-type and homozygous products were melted in the presence of a saturating DNA dye (LCGreen). High resolution melting curves and derivative plot are shown. Heterozygotes, or mixed wild type and homozygous variant produce a large change in the shape of the melting curve (red) in comparison to wild-type and homozygous variant (black). Disclosures Wittwer: BioFire Diagnostics: Aspects of melting analysis Patents & Royalties, Membership on an entity's Board of Directors or advisory committees, Research Funding.


2006 ◽  
Vol 52 (3) ◽  
pp. 494-503 ◽  
Author(s):  
Mark G Herrmann ◽  
Jacob D Durtschi ◽  
L Kathryn Bromley ◽  
Carl T Wittwer ◽  
Karl V Voelkerding

Abstract Background: DNA melting analysis for genotyping and mutation scanning of PCR products by use of high-resolution instruments with special “saturation” dyes has recently been reported. The comparative performance of other instruments and dyes has not been evaluated. Methods: A 110-bp fragment of the β-globin gene including the sickle cell anemia locus (A17T) was amplified by PCR in the presence of either the saturating DNA dye, LCGreen Plus, or SYBR Green I. Amplicons of 3 different genotypes (wild-type, heterozygous, and homozygous mutants) were melted on 9 different instruments (ABI 7000 and 7900HT, Bio-Rad iCycler, Cepheid SmartCycler, Corbett Rotor-Gene 3000, Idaho Technology HR-1 and LightScanner, and the Roche LightCycler 1.2 and LightCycler 2.0) at a rate of 0.1 °C/s or as recommended by the manufacturer. The ability of each instrument/dye combination to genotype by melting temperature (Tm) and to scan for heterozygotes by curve shape was evaluated. Results: Resolution varied greatly among instruments with a 15-fold difference in Tm SD (0.018 to 0.274 °C) and a 19-fold (LCGreen Plus) or 33-fold (SYBR Green I) difference in the signal-to-noise ratio. These factors limit the ability of most instruments to accurately genotype single-nucleotide polymorphisms by amplicon melting. Plate instruments (96-well) showed the greatest variance with spatial differences across the plates. Either SYBR Green I or LCGreen Plus could be used for genotyping by Tm, but only LCGreen Plus was useful for heterozygote scanning. However, LCGreen Plus could not be used on instruments with an argon laser because of spectral mismatch. All instruments compatible with LCGreen Plus were able to detect heterozygotes by altered melting curve shape. However, instruments specifically designed for high-resolution melting displayed the least variation, suggesting better scanning sensitivity and specificity. Conclusion: Different instruments and dyes vary widely in their ability to genotype homozygous variants and scan for heterozygotes by whole-amplicon melting analysis.


2010 ◽  
Vol 12 (5) ◽  
pp. 697-704 ◽  
Author(s):  
Panagiotis A. Vorkas ◽  
Nikoleta Poumpouridou ◽  
Sophia Agelaki ◽  
Christos Kroupis ◽  
Vassilis Georgoulias ◽  
...  

2010 ◽  
pp. n/a-n/a
Author(s):  
Supatra Sirichotiyakul ◽  
Chanane Wanapirak ◽  
Rattika Saetung ◽  
Torpong Sanguansermsri

Author(s):  
Jason T. McKinney ◽  
Lyle M. Nay ◽  
David De Koeyer ◽  
Gudrun H. Reed ◽  
Mikeal Wall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document