scholarly journals Tibetan PHD2D4E High Altitude Adapted Gene Can be Rapidly Detected By High Resolution Melting Assay

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4875-4875
Author(s):  
Anna Shestakova ◽  
Felipe Lorenzo ◽  
Tsewang Tashi ◽  
Lucie Lanikova ◽  
Carl T Wittwer ◽  
...  

Abstract High altitude is accompanied by hypoxia. Acute and chronic hypoxia induces a number of compensatory physiological responses mediated by hypoxia-inducible factors (HIFs) that regulate erythropoiesis, iron and energy metabolism, and other essential organismal responses. Excessive HIF responses occurring at high altitude may be accompanied by morbidity (polycythemia and pulmonary hypertension) or mortality (brain and pulmonary edema). HIFs are down regulated by two principal factors, i.e. prolyl hydroxylases (PHDs) and von Hippel Lindau proteins (VHL). Tibetans have lived at 3,000-5,000 meters for approximately 20,000 years and have acquired a number of beneficial genetic adaptations which appear to prevent negative responses to hypoxia at high-altitude. Deciphering these genetic changes is crucial to improve our understanding of the underlying hypoxia-mediated response mechanisms and to develop targeted therapies. We recently identified the first Tibetan-specific mutation, PHD2D4E, caused by a missense mutation (rs186996510) in EGLN1. PHD2D4E has an allelic frequency of ~85% in Tibetans and a low Km for oxygen, accounting for the protection of Tibetans from high-altitude polycythemia. Other effects of PHD2D4E on HIF-regulated pathophysiology remain to be delineated. A 77% GC-rich area surrounds rs186996510, resulting in a low success rate of detecting the mutation by Sanger sequencing or next-generation sequencing. PHD2D4E was unreported in published whole-genome analyses of Tibetans (Xin Yi et. al. Science 2010). Here we describe a high-resolution melting assay of a small PCR product for targeted genotyping of rs186996510. The single base-pair change (G to C) is visualized by melting small amplicons in the presence of a fluorescent DNA-binding dye. Heterozygotes are differentiated from homozygous genotypes by a pronounced change in the shape of the melting curve caused by the formation of heteroduplexes. However, wild type and homozygous variants are difficult to distinguish by melting alone, and require an additional step of a second melting analysis after mixing with known wild type DNA. Upon melting these mixtures, homozygotes appear as heterozygous melting curves, while wild type genotypes will remain wild type (Figure 1). We developed and validated a high resolution melting assay for rapid genotyping of PHD2D4E suitable for population and disease association studies. In our ongoing analyses, we genotyped DNA from over 300 Tibetans residing at sea level, 1300 meters, 1730-2300 meters and 4320 meters, and are correlating the allelic frequency of PHD2D4E with hematocrit levels. The high resolution melting assay for genotyping PHD2D4E is a simple, accurate, rapid, and inexpensive approach to identify SNP-targeted mutations, especially suitable for a large number of samples such as needed for population studies, without the expense and time required for sequencing studies. Figure 1. High resolution melting analysis of rs186996510 using a 48-base a pair PCR product amplified with primers Forward 5Õ AACGCTCTCACGCCGCCATGGCCAATGA 3Õ and Reverse 5Õ GCCGGGCCCGCCGCT 3Õ. Rapid-cycle PCR amplification and melting analysis were performed in a LS32 real-time instrument. Amplicons from homozygous, heterozygous and wild-type genotypes, and a mixture of wild-type and homozygous products were melted in the presence of a saturating DNA dye (LCGreen). High resolution melting curves and derivative plot are shown. Heterozygotes, or mixed wild type and homozygous variant produce a large change in the shape of the melting curve (red) in comparison to wild-type and homozygous variant (black). Figure 1. High resolution melting analysis of rs186996510 using a 48-base a pair PCR product amplified with primers Forward 5Õ AACGCTCTCACGCCGCCATGGCCAATGA 3Õ and Reverse 5Õ GCCGGGCCCGCCGCT 3Õ. Rapid-cycle PCR amplification and melting analysis were performed in a LS32 real-time instrument. Amplicons from homozygous, heterozygous and wild-type genotypes, and a mixture of wild-type and homozygous products were melted in the presence of a saturating DNA dye (LCGreen). High resolution melting curves and derivative plot are shown. Heterozygotes, or mixed wild type and homozygous variant produce a large change in the shape of the melting curve (red) in comparison to wild-type and homozygous variant (black). Disclosures Wittwer: BioFire Diagnostics: Aspects of melting analysis Patents & Royalties, Membership on an entity's Board of Directors or advisory committees, Research Funding.

2007 ◽  
Vol 53 (7) ◽  
pp. 1191-1198 ◽  
Author(s):  
Joshua G Vandersteen ◽  
Pinar Bayrak-Toydemir ◽  
Robert A Palais ◽  
Carl T Wittwer

Abstract Background: Heteroduplex scanning techniques usually detect all heterozygotes, including common variants not of clinical interest. Methods: We conducted high-resolution melting analysis on the 24 exons of the ACVRL1 and ENG genes implicated in hereditary hemorrhagic telangiectasia (HHT). DNA in samples from 13 controls and 19 patients was PCR amplified in the presence of LCGreen® I, and all 768 exons melted in an HR-1® instrument. We used 10 wild-type controls to identify common variants, and the remaining samples were blinded, amplified, and analyzed by melting curve normalization and overlay. Unlabeled probes characterized the sequence of common variants. Results: Eleven common variants were associated with 8 of the 24 HHT exons, and 96% of normal samples contained at least 1 variant. As a result, the positive predictive value (PPV) of a heterozygous exon was low (31%), even in a population of predominantly HHT patients. However, all common variants produced unique amplicon melting curves that, when considered and eliminated, resulted in a PPV of 100%. In our blinded study, 3 of 19 heterozygous disease-causing variants were missed; however, 2 were clerical errors, and the remaining false negative would have been identified by difference analysis. Conclusions: High-resolution melting analysis is a highly accurate heteroduplex scanning technique. With many exons, however, use of single-sample instruments may lead to clerical errors, and routine use of difference analysis is recommended. Common variants can be identified by their melting curve profiles and genotyped with unlabeled probes, greatly reducing the false-positive results common with scanning techniques.


2003 ◽  
Vol 49 (3) ◽  
pp. 396-406 ◽  
Author(s):  
Cameron N Gundry ◽  
Joshua G Vandersteen ◽  
Gudrun H Reed ◽  
Robert J Pryor ◽  
Jian Chen ◽  
...  

Abstract Background: Common methods for identification of DNA sequence variants use gel electrophoresis or column separation after PCR. Methods: We developed a method for sequence variant analysis requiring only PCR and amplicon melting analysis. One of the PCR primers was fluorescently labeled. After PCR, the melting transition of the amplicon was monitored by high-resolution melting analysis. Different homozygotes were distinguished by amplicon melting temperature (Tm). Heterozygotes were identified by low-temperature melting of heteroduplexes, which broadened the overall melting transition. In both cases, melting analysis required ∼1 min and no sample processing was needed after PCR. Results: Polymorphisms in the HTR2A (T102C), β-globin [hemoglobin (Hb) S, C, and E], and cystic fibrosis (F508del, F508C, I507del, I506V) genes were analyzed. Heteroduplexes produced by amplification of heterozygous DNA were best detected by rapid cooling (>2 °C/s) of denatured products, followed by rapid heating during melting analysis (0.2–0.4 °C/s). Heterozygotes were distinguished from homozygotes by a broader melting transition, and each heterozygote had a uniquely shaped fluorescent melting curve. All homozygotes tested were distinguished from each other, including Hb AA and Hb SS, which differed in Tm by <0.2 °C. The amplicons varied in length from 44 to 304 bp. In place of one labeled and one unlabeled primer, a generic fluorescent oligonucleotide could be used if a 5′ tail of identical sequence was added to one of the two unlabeled primers. Conclusion: High-resolution melting analysis of PCR products amplified with labeled primers can identify both heterozygous and homozygous sequence variants.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 7075-7075
Author(s):  
T. Takano ◽  
Y. Ohe ◽  
K. Furuta ◽  
K. Tsuta ◽  
K. Nomoto ◽  
...  

7075 Background: Recent studies have shown that EGFR mutations, mainly deletions in exon 19 (DEL) and L858R, are associated with gefitinib sensitivity in patients (pts) with NSCLC. We established a new easy method, using high-resolution melting analysis (HRMA), for detecting DEL and L858R mutations even from small biopsy or cytology samples, and evaluated the significance of EGFR mutations in NSCLC on a larger scale. Methods: Among 364 advanced or recurrent NSCLC pts treated with gefitinib between Jul 2002 and Dec 2004, HRMA was performed in 207 pts from whom specimens were available. DNA extracted from the archival tissue or cytology samples not subjected to microdissection was analyzed to detect DEL and L858R using HR-1 (Idaho Technology), an HRMA device. To validate this method, the results were compared with direct sequencing data obtained from microdissected tumor cells from surgical specimens in 66 pts. Results: Tissue/cytology/both samples were analyzed in 91/77/39 pts. EGFR mutations were detected in 85 (41%; DEL/L858R: 49/36) of the 207 pts. In the comparison with direct sequencing, consistent results were obtained from all of the 66 tissue samples, while false negative results were obtained in 2 of the 28 cytology samples. EGFR mutations were seen more frequently in women (54% vs. 31%; P = .001), never-smokers (53% vs. 32%; P = .002), and pts with adenocarcinoma (44% vs. 11%; P = .007). CR/PR/SD/PD was observed in 2/64/11/8 pts with EGFR mutations and in 0/10/23/89 pts with wild-type EGFR. The response rate (78% vs. 8%), time to progression (median, 9.1 vs. 1.6 months) and overall survival (median, 19.9 vs. 9.1 months) were all significantly superior in pts with EGFR mutations (P < .0001). Minor response and/or long SD (>6 months) was observed more frequently in SD pts with EGFR mutations than in those with wild-type EGFR (91% vs. 26%; P < .001). Among the pts with EGFR mutations, the response rate was significantly higher in the pts with DEL than in those with L858R (86% vs. 67%; P = .037). Conclusions: HRMA is a practical and precise method to detect DEL and L858R mutations. EGFR mutations strongly predict a better response and longer survival in NSCLC pts treated with gefitinib. No significant financial relationships to disclose.


2008 ◽  
Vol 54 (12) ◽  
pp. 2055-2058 ◽  
Author(s):  
Michael H Cho ◽  
Dawn Ciulla ◽  
Barbara J Klanderman ◽  
Benjamin A Raby ◽  
Edwin K Silverman

Abstract Background: High-resolution melting curve analysis is an accurate method for mutation detection in genomic DNA. Few studies have compared the performance of high-resolution DNA melting curve analysis (HRM) in genomic and whole-genome amplified (WGA) DNA. Methods: In 39 paired genomic and WGA samples, 23 amplicons from 9 genes were PCR amplified and analyzed by high-resolution melting curve analysis using the 96-well LightScanner (Idaho Technology). We used genotyping and bidirectional resequencing to verify melting curve results. Results: Melting patterns were concordant between the genomic and WGA samples in 823 of 863 (95%) analyzed sample pairs. Of the discordant patterns, there was an overrepresentation of alternate melting curve patterns in the WGA samples, suggesting the presence of a mutation (false positives). Targeted resequencing in 135 genomic and 136 WGA samples revealed 43 single nucleotide polymorphisms (SNPs). All SNPs detected in genomic samples were also detected in WGA. Additional genotyping and sequencing allowed the classification of 628 genomic and 614 WGA amplicon samples. Heterozygous variants were identified by non–wild-type melting pattern in 98% of genomic and 97% of WGA samples (P = 0.11). Wild types were correctly classified in 99% of genomic and 91% of WGA samples (P &lt; 0.001). Conclusions: In WGA DNA, high-resolution DNA melting curve analysis is a sensitive tool for SNP discovery through detection of heterozygote variants; however, it may misclassify a greater number of wild-type samples.


2006 ◽  
Vol 52 (1) ◽  
pp. 138-141 ◽  
Author(s):  
Rebecca L Margraf ◽  
Rong Mao ◽  
W Edward Highsmith ◽  
Leonard M Holtegaard ◽  
Carl T Wittwer

Abstract Background: Single-base pair missense mutations in exons 10, 11, 13, 14, 15, and 16 of the RET protooncogene are associated with the autosomal dominant multiple endocrine neoplasia type 2 (MEN2) syndromes: MEN2A, MEN2B, and familial medullary thyroid carcinoma. The current widely used approach for RET mutation detection is sequencing of the exons. Methods: Because RET mutations are rare and the majority are heterozygous mutations, we investigated RET mutation detection by high-resolution amplicon melting analysis. This mutation scanning technique uses a saturating double-stranded nucleic acid binding dye, LCGreen®, and the high-resolution melter, HR-1™, to detect heterozygous and homozygous sequence variations. Mutant genotypes are distinguished from the wild-type genotype by an altered amplicon melting curve shape or position. Results: Samples of 26 unique RET mutations, 4 nonpathogenic polymorphisms, or the wild-type genotype were available for this study. The developed RET mutation-scanning assay differentiated RET sequence variations from the wild-type genotype by altered derivative melting curve shape or position. A blinded study of 80 samples (derived from the 35 mutant, polymorphism, or wild-type samples) demonstrated that 100% of RET sequence variations were differentiated from wild-type samples. For exons 11 and 13, the nonpathogenic polymorphisms could be distinguished from the pathogenic RET mutations. Some RET mutations could be directly genotyped by the mutation scanning assay because of unique derivative melting curve shapes. Conclusion: RET high-resolution amplicon melting analysis is a sensitive, closed-tube assay that can detect RET protooncogene sequence variations.


2004 ◽  
Vol 50 (10) ◽  
pp. 1748-1754 ◽  
Author(s):  
Gudrun H Reed ◽  
Carl T Wittwer

Abstract Background: Screening for heterozygous sequence changes in PCR products, also known as “mutation scanning”, is an important tool for genetic research and clinical applications. Conventional methods require a separation step. Methods: We evaluated the sensitivity and specificity of homogeneous scanning, using a saturating DNA dye and high-resolution melting. Heterozygous single-nucleotide polymorphism (SNP) detection was studied in three different sequence backgrounds of 40%, 50%, and 60% GC content. PCR products of 50–1000 bp were generated in the presence of LCGreen™ I. After fluorescence normalization and temperature overlay, melting curve shape was used to judge the presence or absence of heterozygotes among 1632 cases. Results: For PCR products of 300 bp or less, all 280 heterozygous and 296 wild-type cases were correctly called without error. In 672 cases between 400 and 1000 bp with the mutation centered, the sensitivity and specificity were 96.1% and 99.4%, respectively. When the sequence background and product size with the greatest error rate were used, the sensitivity of off-center SNPs (384 cases) was 95.6% with a specificity of 99.4%. Most false negatives occurred with SNPs that were compared with an A or T wild type sequence. Conclusions: High-resolution melting analysis with the dye LCGreen I identifies heterozygous single-base changes in PCR products with a sensitivity and specificity comparable or superior to nonhomogeneous techniques. The error rate of scanning depends on the PCR product size and the type of base change, but not on the position of the SNP. The technique requires only PCR reagents, the dye LCGreen I, and 1–2 min of closed-tube, post-PCR analysis.


Genes ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 408 ◽  
Author(s):  
Nur Fadzil ◽  
Alina Wagiran ◽  
Faezah Mohd Salleh ◽  
Shamsiah Abdullah ◽  
Nur Mohd Izham

The present study demonstrated High Resolution Melting (HRM) analysis combined with DNA barcode (Bar-HRM) as a fast and highly sensitive technique for detecting adulterants in Eurycoma longifolia commercial herbal products. Targeting the DNA barcoding of the chloroplastic region-ribulose biphosphate carboxylase large chain (rbcL) and the nuclear ribosomal region- internal transcribed spacer 2 (ITS2), PCR amplification and HRM analysis using saturated Eva green dye as the source of fluorescence signals, was accomplished by employing a real-time cycler. The results were further validated by sequencing to identify unknown sequence from Genbank database and to generate phylogenetic tree using neighbour joint (NJ) analysis. Both of the DNA markers exhibited a distinguishable melting temperature and shape of the normalised curve between the reference and the adulterants. In the case of species identification, ITS2 was more successful in differentiating between species. Additionally, detection of admixture sample containing small traces of targeted E. longifolia DNA (w/v) can be detected as low as 5% for rbcL and less than 1% for ITS2, proving the sensitivity and versatility of the HRM analysis. In conclusion, the Bar-HRM analysis is a fast and reliable technique that can effectively detect adulterants in herbal products. Therefore, this will be beneficial for regulatory agencies in order to regulate food safety issues.


2005 ◽  
Vol 51 (10) ◽  
pp. 1770-1777 ◽  
Author(s):  
Luming Zhou ◽  
Lesi Wang ◽  
Robert Palais ◽  
Robert Pryor ◽  
Carl T Wittwer

Abstract Background: High-resolution DNA melting analysis with saturation dyes for either mutation scanning of PCR products or genotyping with unlabeled probes has been reported. However, simultaneous PCR product scanning and probe genotyping in the same reaction has not been described. Methods: Asymmetric PCR was performed in the presence of unlabeled oligonucleotide probes and a saturating fluorescent DNA dye. High-resolution melting curves for samples in either capillaries (0.3 °C/s) or microtiter format (0.1 °C/s) were generated in the same containers used for amplification. Melting curves of the factor V Leiden single-nucleotide polymorphism (SNP) and several mutations in exons 10 and 11 of the cystic fibrosis transconductance regulator gene were analyzed for both PCR product and probe melting transitions. Results: Independent verification of genotype for simple SNPs was achieved by either PCR product or probe melting transitions. Two unlabeled probes in one reaction could genotype many sequence variants with simultaneous scanning of the entire PCR product. For example, analysis of both product and probe melting transitions genotyped ΔF508, ΔI507, Q493X, I506V, and F508C variants in exon 10 and G551D, G542X, and R553X variants in exon 11. Unbiased hierarchal clustering of the melting transitions identified the specific sequence variants. Conclusions: When DNA melting is performed rapidly and observed at high resolution with saturating DNA dyes, it is possible to scan for mutations and genotype at the same time within a few minutes after amplification. The method is no more complex than PCR and may reduce the need for resequencing.


Sign in / Sign up

Export Citation Format

Share Document