Mammalian DNA Repair and the Cellular DNA Polymerases

2003 ◽  
pp. 161-180 ◽  
Author(s):  
Samuel H. Wilson ◽  
Rakesh K. Singhal
1999 ◽  
Vol 46 (2) ◽  
pp. 289-298 ◽  
Author(s):  
A Hałas ◽  
Z Policińska ◽  
H Baranowska ◽  
W J Jachymczyk

We have studied the ability of yeast DNA polymerases to carry out repair of lesions caused by UV irradiation in Saccharomyces cerevisiae. By the analysis of postirradiation relative molecular mass changes in cellular DNA of different DNA polymerases mutant strains, it was established that mutations in DNA polymerases delta and epsilon showed accumulation of single-strand breaks indicating defective repair. Mutations in other DNA polymerase genes exhibited no defects in DNA repair. Thus, the data obtained suggest that DNA polymerases delta and epsilon are both necessary for DNA replication and for repair of lesions caused by UV irradiation. The results are discussed in the light of current concepts concerning the specificity of DNA polymerases in DNA repair.


1998 ◽  
pp. 161-180
Author(s):  
Samuel H. Wilson ◽  
Rakesh K. Singhal

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Katerina Zabrady ◽  
Matej Zabrady ◽  
Peter Kolesar ◽  
Arthur W. H. Li ◽  
Aidan J. Doherty

AbstractCRISPR-Cas pathways provide prokaryotes with acquired “immunity” against foreign genetic elements, including phages and plasmids. Although many of the proteins associated with CRISPR-Cas mechanisms are characterized, some requisite enzymes remain elusive. Genetic studies have implicated host DNA polymerases in some CRISPR-Cas systems but CRISPR-specific replicases have not yet been discovered. We have identified and characterised a family of CRISPR-Associated Primase-Polymerases (CAPPs) in a range of prokaryotes that are operonically associated with Cas1 and Cas2. CAPPs belong to the Primase-Polymerase (Prim-Pol) superfamily of replicases that operate in various DNA repair and replication pathways that maintain genome stability. Here, we characterise the DNA synthesis activities of bacterial CAPP homologues from Type IIIA and IIIB CRISPR-Cas systems and establish that they possess a range of replicase activities including DNA priming, polymerisation and strand-displacement. We demonstrate that CAPPs operonically-associated partners, Cas1 and Cas2, form a complex that possesses spacer integration activity. We show that CAPPs physically associate with the Cas proteins to form bespoke CRISPR-Cas complexes. Finally, we propose how CAPPs activities, in conjunction with their partners, may function to undertake key roles in CRISPR-Cas adaptation.


1988 ◽  
Vol 263 (25) ◽  
pp. 12228-12234 ◽  
Author(s):  
H Randahl ◽  
G C Elliott ◽  
S Linn
Keyword(s):  

1997 ◽  
Vol 272 (6) ◽  
pp. L1174-L1180 ◽  
Author(s):  
M. Takeoka ◽  
W. F. Ward ◽  
H. Pollack ◽  
D. W. Kamp ◽  
R. J. Panos

Administration of exogenous keratinocyte growth factor (KGF) prevents or attenuates several forms of oxidant-mediated lung injury. Because DNA damage in epithelial cells is a component of radiation pneumotoxicity, we determined whether KGF ameliorated DNA strand breaks in irradiated A549 cells. Cells were exposed to 137Cs gamma rays, and DNA damage was measured by alkaline unwinding and ethidium bromide fluorescence after a 30-min recovery period. Radiation induced a dose-dependent increase in DNA strand breaks. The percentage of double-stranded DNA after exposure to 30 Gy increased from 44.6 +/- 3.5% in untreated control cells to 61.6 +/- 5.0% in cells cultured with 100 ng/ml KGF for 24 h (P < 0.05). No reduction in DNA damage occurred when the cells were cultured with KGF but maintained at 0 degree C during and after irradiation. The sparing effect of KGF on radiation-induced DNA damage was blocked by aphidicolin, an inhibitor of DNA polymerases-alpha, -delta, and -epsilon and by butylphenyl dGTP, which blocks DNA polymerase-alpha strongly and polymerases-delta and -epsilon less effectively. However, dideoxythymidine triphosphate, a specific inhibitor of DNA polymerase-beta, did not abrogate the KGF effect. Thus KGF increases DNA repair capacity in irradiated pulmonary epithelial cells, an effect mediated at least in part by DNA polymerases-alpha, -delta, and -epsilon. Enhancement of DNA repair capability after cell damage may be one mechanism by which KGF is able to ameliorate oxidant-mediated alveolar epithelial injury.


ChemInform ◽  
2006 ◽  
Vol 37 (21) ◽  
Author(s):  
Alexander K. Showalter ◽  
Brandon J. Lamarche ◽  
Marina Bakhtina ◽  
Mei-I Su ◽  
Kuo-Hsiang Tang ◽  
...  

2006 ◽  
Vol 80 (21) ◽  
pp. 10346-10356 ◽  
Author(s):  
Vivian W. Choi ◽  
Douglas M. McCarty ◽  
R. Jude Samulski

ABSTRACT Recentstudies have shown that wild-type and recombinant adeno-associated virus (AAV and rAAV) genomes persist in human tissue predominantly as double-stranded (ds) circular episomes derived from input linear single-stranded virion DNA. Using self-complementary recombinant AAV (scAAV) vectors, we generated intermediates that directly transition to ds circular episomes. The scAAV genome ends are palindromic hairpin-structured terminal repeats, resembling a double-stranded break repair intermediate. Utilizing this substrate, we found cellular DNA recombination and repair factors to be essential for generating circular episomal products. To identify the specific cellular proteins involved, the scAAV circularization-dependent vector was used as a reporter in 19 mammalian DNA repair-deficient cell lines. The results show that RecQ helicase family members (BLM and WRN), Mre11 and NBS1 of the Mre11-Rad50-Nbs1 (MRN) complex, and ATM are required for efficient scAAV genome circularization. We further demonstrated that the scAAV genome requires ATM and DNA-PKCS, but not NBS1, to efficiently convert to a circular form in nondividing cells in vivo using transgenic mice. These studies identify specific pathways involved for further elucidating viral and cellular mechanisms of DNA maintenance important to the viral life cycle and vector utilizations.


2006 ◽  
Vol 106 (2) ◽  
pp. 340-360 ◽  
Author(s):  
Alexander K. Showalter ◽  
Brandon J. Lamarche ◽  
Marina Bakhtina ◽  
Mei-I Su ◽  
Kuo-Hsiang Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document