mrn complex
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 33)

H-INDEX

36
(FIVE YEARS 4)

Author(s):  
Nujud Almuzaini ◽  
Madison Moore ◽  
Marjorie Robert-Guroff ◽  
Michael A. Thomas

Genome instability, a hallmark of cancer, exists as part of a cycle that leads to DNA damage and DNA > 4n that further enhances genome instability. Ad E4orf3 is a viral oncogene. Here, we describe E4orf3 mediated signaling events that support DNA > 4n in Δ E1B Ad-infected cells. These signaling events may be linked to the oncogenic potential of E4orf3 and may provide a basis for how some cells survive with DNA > 4n.


2021 ◽  
Author(s):  
Christopher Warren ◽  
Nikola P Pavletich

DNA double-strand breaks (DSBs) can lead to mutations, chromosomal rearrangements, genome instability, and ultimately cancer. Central to the sensing of DSBs are ATM (Ataxia telangiectasia mutated) kinase, which belongs to the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family, and the MRN (Mre11-Rad50-Nbs1) protein complex that activates ATM. How the MRN complex recruits and activates ATM kinase is poorly understood. Previous studies indicate that the FxF/Y motif of Nbs1 directly binds to ATM kinase, and is required to retain active ATM at sites of DNA damage. Here, we report the 2.5 Å resolution cryo-EM structures of human ATM and its complex with the Nbs1 FxF/Y motif. In keeping with previous structures of ATM and its yeast homolog Tel1, the dimeric human ATM kinase adopts a symmetric, butterfly-shaped autoinhibited structure. The conformation of the ATM kinase domain is most similar to the inactive states of other PIKKs, suggesting that activation may involve an analogous realigning the N and C lobes along with relieving the blockage of the substrate-binding site. We show that the Nbs1 FxF/Y motif binds to a conserved hydrophobic cleft within the Spiral domain of ATM, suggesting an allosteric mechanism of activation. We evaluate the importance of these interactions with mutagenesis and biochemical assays.


2021 ◽  
Author(s):  
Marium Rana ◽  
Alessio Perotti ◽  
Lucy Bisset ◽  
James Smith ◽  
Emma Lamben ◽  
...  

Abstract Pancreatic ductal adenocarcinoma (PDAC) is a disease that remains largely refractory to existing treatments including the nucleoside analogue gemcitabine. In the current study we demonstrate that the ferronucleoside 1-(S,Rp) is cytotoxic in a panel of PDAC cell lines including gemcitabine resistant MIAPaCa2, with IC50 values comparable to cisplatin. Biochemical studies show that the mechanism of action is inhibition of DNA-replication, S-phase cell cycle arrest and stalling of DNA-replication forks which were directly observed at single molecule resolution by DNA-fibre fluorography. In agreement with this, transcriptional changes following treatment with 1-(S,Rp) include activation of three of the four genes (HUS1, RAD1, RAD17) of the 9-1-1 check point complex clamp and two of the three genes (MRE11, NBN) that form the MRN complex as well as activation of multiple downstream targets. Furthermore, there was evidence of phosphorylation of checkpoint kinases 1 and 2 as well as RPA1 and gamma H2AX, all of which are considered biochemical markers of replication stress. Studies in p53 deficient cell lines showed activation of CDKN1A (p21) and GADD45A by 1-(S,Rp) was at least partially independent of p53. In conclusion, because of its potency and activity in gemcitabine resistant cells, 1-(S,Rp) is a promising candidate molecule for development of new treatments for PDAC.


2021 ◽  
pp. clincanres.1509.2021
Author(s):  
Islam E. Elkholi ◽  
William D. Foulkes ◽  
Barbara Rivera
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Freddy Khayat ◽  
Elda Cannavo ◽  
Majedh Alshmery ◽  
William R. Foster ◽  
Charly Chahwan ◽  
...  

AbstractThe MRN complex (MRX in Saccharomyces cerevisiae, made of Mre11, Rad50 and Nbs1/Xrs2) initiates double-stranded DNA break repair and activates the Tel1/ATM kinase in the DNA damage response. Telomeres counter both outcomes at chromosome ends, partly by keeping MRN-ATM in check. We show that MRX is disabled by telomeric protein Rif2 through an N-terminal motif (MIN, MRN/X-inhibitory motif). MIN executes suppression of Tel1, DNA end-resection and non-homologous end joining by binding the Rad50 N-terminal region. Our data suggest that MIN promotes a transition within MRX that is not conductive for endonuclease activity, DNA-end tethering or Tel1 kinase activation, highlighting an Achilles’ heel in MRN, which we propose is also exploited by the RIF2 paralog ORC4 (Origin Recognition Complex 4) in Kluyveromyces lactis and the Schizosaccharomyces pombe telomeric factor Taz1, which is evolutionarily unrelated to Orc4/Rif2. This raises the possibility that analogous mechanisms might be deployed in other eukaryotes as well.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyungmin Kim ◽  
Thomas W. Kirby ◽  
Lalith Perera ◽  
Robert E. London

AbstractHuman Nbs1, a component of the MRN complex involved in DNA double strand break repair, contains a concatenated N-terminal FHA-BRCT1/2 sequence that supports interaction with multiple phosphopeptide binding partners. MDC1 binding localizes Nbs1 to the damage site, while binding of CDK-phosphorylated CtIP activates additional ATM-dependent CtIP phosphorylation, modulating substrate-dependent resection. We have investigated the phosphopeptide binding characteristics of Nbs1 BRCT1/2 based on a molecular modeling approach that revealed structural homology with the tandem TopBP1 BRCT7/8 domains. Relevance of the model was substantiated by the ability of TopBP1-binding FANCJ phosphopeptide to interact with hsNbsBRCT1/2, albeit with lower affinity. The modeled BRCT1/2 is characterized by low pSer/pThr selectivity, preference for a cationic residue at the + 2 position, and an inter-domain binding cleft selective for hydrophobic residues at the + 3/ + 4 positions. These features provide insight into the basis for interaction of SDT motifs with the BRCT1/2 domains and allowed identification of CtIP pSer347- and pThr847-containing phosphopeptides as high and lower affinity ligands, respectively. Among other binding partners considered, rodent XRCC1 contains an SDT sequence in the second linker consistent with high-affinity Nbs1 binding, while human XRCC1 lacks this motif, but contains other phosphorylated sequences that exhibit low-affinity binding.


2021 ◽  
Author(s):  
Alessandro Bianchi ◽  
Anthony Carr ◽  
Petr Cejka ◽  
Elda Cannavo ◽  
William Foster ◽  
...  

The MRN complex (MRX in Saccharomyces cerevisiae) initiates the repair of DNA double-stranded breaks (DSBs) and activates the Tel1/ATM kinase, which orchestrates the DNA damage response (DDR). Telomeres prevent DDR activation at chromosome ends, partly by keeping MRN-ATM in check. We show that the multiple activities of the MRX complex are disabled by telomeric protein Rif2 through the action of a short motif (MIN, MRN/X-inhibitory motif) at the N-terminal end of the protein. MIN executes telomeric suppression of Tel1, DDR and and non-homologous end joining (NHEJ) via direct biding to the N-terminal region of Rad50. A combination of biochemical and genetic data suggests that Rif2 promotes a transition within the MRX complex that is not conductive for endonuclease activity, DNA-end tethering or Tel1 kinase activation. We suggests that the MIN motif operates in the RIF2 paralog ORC4 (Origin Recognition Complex 4) in K. lactis and in telomeric protein Taz1 in Schizoccharomyces pombe, which is not evolutionarily related to Orc4/Rif2. These results highlight a potential Achilles heel in Rad50, the regulatory subunit of MRN, which we suggest has been targeted by different telomeric factors in multiple fungal lineages, raising the possibility that analogous approaches might be deployed in other Eukaryotes as well.


2021 ◽  
pp. jcs.249706
Author(s):  
Matteo Cabrini ◽  
Marco Roncador ◽  
Alessandro Galbiati ◽  
Lina Cipolla ◽  
Antonio Maffia ◽  
...  

The DNA damage response (DDR) is the signaling cascade that recognizes DNA double-strand breaks (DSB) and promotes their resolution via the DNA repair pathways of Non-Homologous End Joining (NHEJ) or Homologous Recombination (HR). We and others have shown that DDR activation requires DROSHA. However, whether DROSHA exerts its functions by associating with damage sites, what controls its recruitment and how DROSHA influences DNA repair, remains poorly understood. Here we show that DROSHA associates to DSBs independently from transcription. Neither H2AX, nor ATM nor DNA-PK kinase activities are required for its recruitment to break site. Rather, DROSHA interacts with RAD50 and inhibition of MRN by Mirin treatment abolishes this interaction. MRN inactivation by RAD50 knockdown or mirin treatment prevents DROSHA recruitment to DSB and, as a consequence, also 53BP1 recruitment. During DNA repair, DROSHA inactivation reduces NHEJ and boosts HR frequency. Indeed, DROSHA knockdown also increase the association of downstream HR factors such as RAD51 to DNA ends. Overall, our results demonstrate that DROSHA is recruited at DSBs by the MRN complex and direct DNA repair toward NHEJ.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Juri Na ◽  
Joseph A. Newman ◽  
Chee Kin Then ◽  
Junetha Syed ◽  
Iolanda Vendrell ◽  
...  

AbstractThe human MRE11/RAD50/NBS1 (MRN) complex plays a crucial role in sensing and repairing DNA DSB. MRE11 possesses dual 3′−5′ exonuclease and endonuclease activity and forms the core of the multifunctional MRN complex. We previously identified a C-terminally truncated form of MRE11 (TR-MRE11) associated with post-translational MRE11 degradation. Here we identified SPRTN as the essential protease for the formation of TR-MRE11 and characterised the role of this MRE11 form in its DNA damage response (DDR). Using tandem mass spectrometry and site-directed mutagenesis, the SPRTN-dependent cleavage site for MRE11 was identified between 559 and 580 amino acids. Despite the intact interaction of TR-MRE11 with its constitutive core complex proteins RAD50 and NBS1, both nuclease activities of truncated MRE11 were dramatically reduced due to its deficient binding to DNA. Furthermore, lack of the MRE11 C-terminal decreased HR repair efficiency, very likely due to abolished recruitment of TR-MRE11 to the sites of DNA damage, which consequently led to increased cellular radiosensitivity. The presence of this DNA repair-defective TR-MRE11 could explain our previous finding that the high MRE11 protein expression by immunohistochemistry correlates with improved survival following radical radiotherapy in bladder cancer patients.


Sign in / Sign up

Export Citation Format

Share Document