scholarly journals Impact of Snow Depth Initialization on Seasonal Prediction of Surface Air Temperature over East Asia for Winter Season

Atmosphere ◽  
2012 ◽  
Vol 22 (1) ◽  
pp. 117-128 ◽  
Author(s):  
Sung-Ho Woo ◽  
Jee-Hoon Jeong ◽  
Baek-Min Kim ◽  
Seong-Joong Kim
2009 ◽  
Vol 137 (7) ◽  
pp. 2250-2262 ◽  
Author(s):  
Hai Lin ◽  
Gilbert Brunet

Using the homogenized Canadian historical daily surface air temperature (SAT) for 210 relatively evenly distributed stations across Canada, the lagged composites and probability of the above- and below-normal SAT in Canada for different phases of the Madden–Julian oscillation (MJO) in the winter season are analyzed. Significant positive SAT anomalies and high probability of above-normal events in the central and eastern Canada are found 5–15 days following MJO phase 3, which corresponds to an enhanced precipitation over the Indian Ocean and Maritime Continent and a reduced convective activity near the tropical central Pacific. On the other hand, a positive SAT anomaly appears over a large part of northern and northeastern Canada about 5–15 days after the MJO is detected in phase 7. An analysis of the evolution of the 500-hPa geopotential height and sea level pressure anomalies indicates that the Canadian SAT anomaly is a result of a Rossby wave train associated with the tropical convection anomaly of the MJO. Hence, the MJO phase provides useful information for the extended-range forecast of Canadian winter surface air temperature. This result also provides an important reference for numerical model verifications.


2019 ◽  
Author(s):  
Xin Hao ◽  
Shengping He ◽  
Huijun Wang ◽  
Tingting Han

Abstract. The East Asian winter monsoon (EAWM) can be greatly influenced by many factors that can be classified as anthropogenic forcing and natural forcing. Here we explore the contribution of anthropogenic influence to the change in the EAWM over the past decades. Under all forcings observed during 1960–2013 (All-Hist run), the atmospheric general circulation model is able to reproduce the climatology and variability of the EAWM-related surface air temperature and 500 hPa geopotential height, and shows a statistically significant decreasing EAWM intensity with a trend coefficient of ∼−0.04 yr−1 which is close to the observed trend. By contrast, the simulation, which is driven by the same forcing as All-Hist run but with the anthropogenic contribution to them removed, shows no decreasing trend in the EAWM intensity. By comparing the simulations under two different forcing scenarios, we further reveal that the responses of the EAWM to the anthropogenic forcing include a rise of 0.6 ° in surface air temperature over the East Asia as well as weakening of the East Asia trough, which may result from the poleward expansion and intensification of the East Asian jet forced by the change of temperature gradient in the troposphere. Additionally, compared with the simulation without anthropogenic forcing, the frequency of strong (weak) EAWM occurrence is reduced (increased) by 45 % (from 0 to 10/7). These results indicate that the weakening of the EAWM during 1960–2013 may be mainly attributed to the anthropogenic influence.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Tan Phan Van ◽  
Hiep Van Nguyen ◽  
Long Trinh Tuan ◽  
Trung Nguyen Quang ◽  
Thanh Ngo-Duc ◽  
...  

To investigate the ability of dynamical seasonal climate predictions for Vietnam, the RegCM4.2 is employed to perform seasonal prediction of 2 m mean (T2m), maximum (Tx), and minimum (Tn) air temperature for the period from January 2012 to November 2013 by downscaling the NCEP Climate Forecast System (CFS) data. For model bias correction, the model and observed climatology is constructed using the CFS reanalysis and observed temperatures over Vietnam for the period 1980–2010, respectively. The RegCM4.2 forecast is run four times per month from the current month up to the next six months. A model ensemble prediction initialized from the current month is computed from the mean of the four runs within the month. The results showed that, without any bias correction (CTL), the RegCM4.2 forecast has very little or no skill in both tercile and value predictions. With bias correction (BAS), model predictions show improved skill. The experiment in which the results from the BAS experiment are further successively adjusted (SUC) with model bias at one-month lead time of the previous run showed further improvement compared to CTL and BAS. Skill scores of the tercile probability forecasts were found to exceed 0.3 for most of the target months.


2020 ◽  
Author(s):  
Seok-Woo Shin ◽  
Dong-Hyun Cha ◽  
Taehyung Kim ◽  
Gayoung Kim ◽  
Changyoung Park ◽  
...  

<p>Extreme temperature can have a devastating impact on the ecological environment (i.e., human health and crops) and the socioeconomic system. To adapt to and cope with the rapidly changing climate, it is essential to understand the present climate and to estimate the future change in terms of temperature. In this study, we evaluate the characteristics of near-surface air temperature (SAT) simulated by two regional climate models (i.e., MM5 and HadGEM3-RA) over East Asia, focusing on the mean and extreme values. To analyze extreme climate, we used the indices for daily maximum (Tmax) and minimum (Tmin) temperatures among the developed Expert Team on Climate Change Detection and Indices (ETCCDI) indices. In the results of the CORDEX-East Asia phase Ⅰ, the mean and extreme values of SAT for DJF (JJA) tend to be colder (warmer) than observation data over the East Asian region. In those of CORDEX-East Asia phase Ⅱ, the mean and extreme values of SAT for DJF and JJA have warmer than those of the CORDEX-East Asia phase Ⅰ except for those of HadGEM3-RA for DJF. Furthermore, the Extreme Temperature Range (ETR, maximum value of Tmax - minimum value of Tmin) of CORDEX-East Asia phase Ⅰ data, which are significantly different from those of observation data, are reduced in that of CORDEX-East Asia phase Ⅱ. Consequently, the high-resolution regional climate models play a role in the improvement of the cold bias having the relatively low-resolution ones. To understand the reasons for the improved and weak points of regional climate models, we investigated the atmospheric field (i.e., flow, air mass, precipitation, and radiation) influencing near-surface air temperature. Model performances for SAT over East Asia were influenced by the expansion of the western North Pacific subtropical high and the location of convective precipitation in JJA and by the contraction of the Siberian high, the spatial distribution of snowfall and associated upwelling longwave radiation in DJF.</p>


2020 ◽  
Author(s):  
Devanil Choudhury ◽  
Debashis Nath ◽  
Wen Chen

<p>We investigated the physical mechanism for late Indian Summer Monsoon onset over Kerala<br>(MOK). 14 early and 9 late onset years are selected based on the criteria when the onset is 5 days or<br>more prior and after normal onset date (i.e 1 st June according to India Meteorological Department)<br>respectively. Then, we perform composite analyses of mean May monthly and daily evolution during<br>early and late onset years to examine the differences in monsoon circulation features prior to the MOK.<br>We find that advection of Surface Air Temperature (SAT) from the northern to the southern China and<br>the eastern Tibetan Plateau (TP) plays an important role to modulate the MOK processes. In the late<br>onset years, more low-level jet (LLJ) from the Bay of Bengal (BOB) divert towards the east Asia before<br>the onset, which is due to an extension of the low sea level pressure and high SAT over the east Asia<br>(eastern TP, east-central China). This strengthens the low-level convergence and upper level divergence<br>over the eastern TP and southern China. As a result, a significant amount of moisture from the BOB<br>is transported towards the eastern TP and southern China. Thereby, a comparatively weaker LLJ and<br>deficit low-level moisture supply over the eastern BOB maintain the key roles in modulating the MOK<br>processes.</p>


Sign in / Sign up

Export Citation Format

Share Document