cordex east asia
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 255 ◽  
pp. 105535
Author(s):  
Ke Yu ◽  
Pinhong Hui ◽  
Weidan Zhou ◽  
Jianping Tang

2020 ◽  
Vol 33 (24) ◽  
pp. 10593-10607
Author(s):  
Minkyu Lee ◽  
Dong-Hyun Cha ◽  
Myoung-Seok Suh ◽  
Eun-Chul Chang ◽  
Joong-Bae Ahn ◽  
...  

AbstractThis study evaluated tropical cyclone (TC) activity simulated by two regional climate models (RCMs) incorporated in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework with two different horizontal resolutions. Evaluation experiments with two RCMs (RegCM4 and MM5) forced by reanalysis data were conducted over the CORDEX-East Asia domain for phases I and II. The main difference between phases I and II is horizontal resolution (50 and 25 km). The 20-yr (1989–2008) mean performances of the experiments were investigated in terms of TC genesis, track, intensity, and TC-induced precipitation. In general, the simulated TC activities over the western North Pacific (WNP) varied depending on the model type and horizontal resolution. For both models, higher horizontal resolution improved the simulation of TC tracks near the coastal regions of East Asia, whereas the coarser horizontal resolution led to underestimated TC genesis compared with the best track data because of greater convective precipitation and enhanced atmospheric stabilization. In addition, the increased horizontal resolution prominently improved the simulation of TCs landfalling in East Asia and associated precipitation around coastal regions. This finding implies that high-resolution RCMs can improve the simulation of TC activities over the WNP (i.e., added value by increasing model resolution); thus, they have an advantage in climate change assessment studies.


2020 ◽  
Vol 37 (11) ◽  
pp. 1191-1210
Author(s):  
Chenwei Shen ◽  
Qingyun Duan ◽  
Chiyuan Miao ◽  
Chang Xing ◽  
Xuewei Fan ◽  
...  

2020 ◽  
Vol 125 (15) ◽  
Author(s):  
Delei Li ◽  
Jianlong Feng ◽  
Alessandro Dosio ◽  
Jifeng Qi ◽  
Zhenhua Xu ◽  
...  

2020 ◽  
Author(s):  
Seok-Woo Shin ◽  
Dong-Hyun Cha ◽  
Taehyung Kim ◽  
Gayoung Kim ◽  
Changyoung Park ◽  
...  

<p>Extreme temperature can have a devastating impact on the ecological environment (i.e., human health and crops) and the socioeconomic system. To adapt to and cope with the rapidly changing climate, it is essential to understand the present climate and to estimate the future change in terms of temperature. In this study, we evaluate the characteristics of near-surface air temperature (SAT) simulated by two regional climate models (i.e., MM5 and HadGEM3-RA) over East Asia, focusing on the mean and extreme values. To analyze extreme climate, we used the indices for daily maximum (Tmax) and minimum (Tmin) temperatures among the developed Expert Team on Climate Change Detection and Indices (ETCCDI) indices. In the results of the CORDEX-East Asia phase Ⅰ, the mean and extreme values of SAT for DJF (JJA) tend to be colder (warmer) than observation data over the East Asian region. In those of CORDEX-East Asia phase Ⅱ, the mean and extreme values of SAT for DJF and JJA have warmer than those of the CORDEX-East Asia phase Ⅰ except for those of HadGEM3-RA for DJF. Furthermore, the Extreme Temperature Range (ETR, maximum value of Tmax - minimum value of Tmin) of CORDEX-East Asia phase Ⅰ data, which are significantly different from those of observation data, are reduced in that of CORDEX-East Asia phase Ⅱ. Consequently, the high-resolution regional climate models play a role in the improvement of the cold bias having the relatively low-resolution ones. To understand the reasons for the improved and weak points of regional climate models, we investigated the atmospheric field (i.e., flow, air mass, precipitation, and radiation) influencing near-surface air temperature. Model performances for SAT over East Asia were influenced by the expansion of the western North Pacific subtropical high and the location of convective precipitation in JJA and by the contraction of the Siberian high, the spatial distribution of snowfall and associated upwelling longwave radiation in DJF.</p>


2020 ◽  
Author(s):  
Dong-Hyun Cha ◽  
Minkyu Lee ◽  
Myoung-Seok Suh ◽  
Eun-Chul Chang ◽  
Joong-Bae Ahn ◽  
...  

<p> This study evaluated tropical cyclone (TC) activity simulated by two regional climate models (RCMs) incorporated in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework with two different horizontal resolutions. Evaluation experiments with two RCMs (RegCM4 and MM5) forced by reanalysis data were conducted over the CORDEX-East Asia domain with 25 km and 50 km horizontal resolutions. The 20-year (1989<strong>–</strong>2008) mean performances of the experiments were investigated in terms of TC genesis, track, intensity, and TC-induced precipitation. In general, the simulated TC activities over the western North Pacific (WNP) varied depending on the model type and horizontal resolution. The MM5 tended to simulate more reasonable TC activity compared with the RegCM4. For both models, higher horizontal resolution improved the simulation of TC tracks near the coastal regions of East Asia, whereas the coarse horizontal resolution led to underestimated TC genesis compared with the best track data because of greater convective precipitation and enhanced atmospheric stabilization. In addition, the increased horizontal resolution prominently improved the simulation of TCs landfalling in East Asia and associated precipitation around coastal regions. This finding implies that high-resolution RCMs can produce added value in improving the simulation of TCs over the WNP; thus, they have an advantage in climate change assessment studies.</p>


2020 ◽  
Author(s):  
Taehyung Kim ◽  
Dong-Hyun Cha ◽  
Gayoung Kim ◽  
Seok-Woo Shin ◽  
Changyong Park ◽  
...  

<p>In the framework of the CORDEX-East Asia, evaluation simulations using high-resolution regional climate models (SNURCM and HadGEM3-RA) with ~25km (Phase2) grid scale have been conducted. In this study, we investigate whether the higher-resolution regional climate models (RCMs) can generate added values for summer mean precipitation, large-scale circulation, and extreme precipitation compared to those with lower-resolution (~50km, Phase 1). In addition, the added value index is used to quantitatively analyze the abilities of fine- and coarse-resolution RCMs. Hence, sets of phase 1 and phase 2 simulations of two RCMs are compared to observations in the East Asia region. In SNURCM simulations, positive (negative) added value of summer mean precipitation is reproduced over most ocean (land) region of East Asia in fine-resolution simulation. Extreme precipitation over Korea and Japan is well reproduced in Phase 2 simulations because the simulations of typhoons and East Asia summer monsoon are improved. In HadGEM3-RA simulations, the results of summer mean precipitation over most East Asian regions above 25°N are improved in Phase 2, while worse results are reproduced below 25°N. But, extreme precipitation in fine-resolution simulation is adequately reproduced in most regions of East Asia except China and the Yellow sea. As a result, the results of the simulations are different depending on the characteristics of the individual models, but more positive added values for the intensity and spatial distribution of precipitation over East Asia are generated as the horizontal resolution of RCMs increases.</p><p>This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMI(KMI2018-01211)</p><p> </p>


Author(s):  
Gayoung Kim ◽  
Dong-Hyun Cha ◽  
Changyong Park ◽  
Chun-Sil Jin ◽  
Dong-Kyou Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document