scholarly journals An Affordable Implementation of Kalman Filter by Eliminating the Explicit Temporal Evolution of the Background Error Covariance Matrix

Atmosphere ◽  
2013 ◽  
Vol 23 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Gyu-Ho Lim ◽  
Ae-Sook Suh ◽  
Ji-Hyun Ha

2018 ◽  
Vol 146 (12) ◽  
pp. 3949-3976 ◽  
Author(s):  
Herschel L. Mitchell ◽  
P. L. Houtekamer ◽  
Sylvain Heilliette

Abstract A column EnKF, based on the Canadian global EnKF and using the RTTOV radiative transfer (RT) model, is employed to investigate issues relating to the EnKF assimilation of Advanced Microwave Sounding Unit-A (AMSU-A) radiance measurements. Experiments are performed with large and small ensembles, with and without localization. Three different descriptions of background temperature error are considered: 1) using analytical vertical modes and hypothetical spectra, 2) using the vertical modes and spectrum of a covariance matrix obtained from the global EnKF after 2 weeks of cycling, and 3) using the vertical modes and spectrum of the static background error covariance matrix employed to initiate a global data assimilation cycle. It is found that the EnKF performs well in some of the experiments with background error description 1, and yields modest error reductions with background error description 3. However, the EnKF is virtually unable to reduce the background error (even when using a large ensemble) with background error description 2. To analyze these results, the different background error descriptions are viewed through the prism of the RT model by comparing the trace of the matrix , where is the RT model and is the background error covariance matrix. Indeed, this comparison is found to explain the difference in the results obtained, which relates to the degree to which deep modes are, or are not, present in the different background error covariances. The results suggest that, after 2 weeks of cycling, the global EnKF has virtually eliminated all background error structures that can be “seen” by the AMSU-A radiances.



2011 ◽  
Vol 139 (11) ◽  
pp. 3389-3404 ◽  
Author(s):  
Thomas Milewski ◽  
Michel S. Bourqui

Abstract A new stratospheric chemical–dynamical data assimilation system was developed, based upon an ensemble Kalman filter coupled with a Chemistry–Climate Model [i.e., the intermediate-complexity general circulation model Fast Stratospheric Ozone Chemistry (IGCM-FASTOC)], with the aim to explore the potential of chemical–dynamical coupling in stratospheric data assimilation. The system is introduced here in a context of a perfect-model, Observing System Simulation Experiment. The system is found to be sensitive to localization parameters, and in the case of temperature (ozone), assimilation yields its best performance with horizontal and vertical decorrelation lengths of 14 000 km (5600 km) and 70 km (14 km). With these localization parameters, the observation space background-error covariance matrix is underinflated by only 5.9% (overinflated by 2.1%) and the observation-error covariance matrix by only 1.6% (0.5%), which makes artificial inflation unnecessary. Using optimal localization parameters, the skills of the system in constraining the ensemble-average analysis error with respect to the true state is tested when assimilating synthetic Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) retrievals of temperature alone and ozone alone. It is found that in most cases background-error covariances produced from ensemble statistics are able to usefully propagate information from the observed variable to other ones. Chemical–dynamical covariances, and in particular ozone–wind covariances, are essential in constraining the dynamical fields when assimilating ozone only, as the radiation in the stratosphere is too slow to transfer ozone analysis increments to the temperature field over the 24-h forecast window. Conversely, when assimilating temperature, the chemical–dynamical covariances are also found to help constrain the ozone field, though to a much lower extent. The uncertainty in forecast/analysis, as defined by the variability in the ensemble, is large compared to the analysis error, which likely indicates some amount of noise in the covariance terms, while also reducing the risk of filter divergence.



2015 ◽  
Vol 8 (3) ◽  
pp. 669-696 ◽  
Author(s):  
G. Descombes ◽  
T. Auligné ◽  
F. Vandenberghe ◽  
D. M. Barker ◽  
J. Barré

Abstract. The specification of state background error statistics is a key component of data assimilation since it affects the impact observations will have on the analysis. In the variational data assimilation approach, applied in geophysical sciences, the dimensions of the background error covariance matrix (B) are usually too large to be explicitly determined and B needs to be modeled. Recent efforts to include new variables in the analysis such as cloud parameters and chemical species have required the development of the code to GENerate the Background Errors (GEN_BE) version 2.0 for the Weather Research and Forecasting (WRF) community model. GEN_BE allows for a simpler, flexible, robust, and community-oriented framework that gathers methods used by some meteorological operational centers and researchers. We present the advantages of this new design for the data assimilation community by performing benchmarks of different modeling of B and showing some of the new features in data assimilation test cases. As data assimilation for clouds remains a challenge, we present a multivariate approach that includes hydrometeors in the control variables and new correlated errors. In addition, the GEN_BE v2.0 code is employed to diagnose error parameter statistics for chemical species, which shows that it is a tool flexible enough to implement new control variables. While the generation of the background errors statistics code was first developed for atmospheric research, the new version (GEN_BE v2.0) can be easily applied to other domains of science and chosen to diagnose and model B. Initially developed for variational data assimilation, the model of the B matrix may be useful for variational ensemble hybrid methods as well.



2020 ◽  
Author(s):  
Ross Noel Bannister

Abstract. Following the development of the simplified atmospheric convective-scale "toy" model (the ABC model, named after its three key parameters: the pure gravity wave frequency, A, the controller of the acoustic wave speed, B, and the constant of proportionality between pressure and density perturbations, C), this paper introduces its associated variational data assimilation system, ABC-DA. The purpose of ABC-DA is to permit quick and efficient research into data assimilation methods suitable for convective scale systems. The system can also be used as an aid to teach and demonstrate data assimilation principles. ABC-DA is flexible, configurable and is efficient enough to be run on a personal computer. The system can run a number of assimilation methods (currently 3DVar and 3DFGAT have been implemented), with user configurable observation networks. Observation operators for direct observations and wind speeds are part of the system, although these can be expanded relatively easily. A key feature of any data assimilation system is how it specifies the background error covariance matrix. ABC-DA uses a control variable transform method to allow this to be done efficiently. This version of ABC-DA mirrors many operational configurations, by modelling multivariate error covariances with uncorrelated control parameters, and spatial error covariances with special uncorrelated spatial patterns separately for each parameter. The software developed (amongst other things) does model runs, calibration tasks associated with the background error covariance matrix, testing and diagnostic tasks, single data assimilation runs, multi-cycle assimilation/forecast experiments, and has associated visualisation software. As a demonstration, the system is used to tackle a scientific question concerning the role of geostrophic balance (GB) to model background error covariances between mass and wind fields. This question arises because, although GB is a very useful mechanism that is successfully exploited in larger scale assimilation systems, its use is questionable at convective scales due to the typically larger Rossby numbers where GB is not so relevant. A series of identical twin experiments is done in cycled assimilation configurations. One experiment exploits GB to represent mass-wind covariances in a mirror of an operational set-up (with use of an additional vertical regression (VR) step, as used operationally). This experiment performs badly where assimilation error accumulates over time. Two further experiments are done: one that does not use GB, and another that does but without the VR step. Turning off GB impairs the performance, and turning off VR improves the performance in general. It is concluded that there is scope to further improve the way that the background error covariance matrices are calibrated, with some directions discussed.



2016 ◽  
Vol 66 (9) ◽  
pp. 1143-1163 ◽  
Author(s):  
Peter C. Chu ◽  
Chenwu Fan ◽  
Tetyana Margolina


2011 ◽  
Vol 139 (9) ◽  
pp. 3036-3051 ◽  
Author(s):  
Mikyoung Jun ◽  
Istvan Szunyogh ◽  
Marc G. Genton ◽  
Fuqing Zhang ◽  
Craig H. Bishop

This paper investigates the effects of spatial filtering on the ensemble-based estimate of the background error covariance matrix in an ensemble-based Kalman filter (EnKF). In particular, a novel kernel smoothing method with variable bandwidth is introduced and its performance is compared to that of the widely used Gaspari–Cohn filter, which uses a fifth-order kernel function with a fixed localization length. Numerical experiments are carried out with the 40-variable Lorenz-96 model. The results of the experiments show that the nonparametric approach provides a more accurate estimate of the background error covariance matrix than the Gaspari–Cohn filter with any localization length. It is also shown that the Gaspari–Cohn filter tends to provide more accurate estimates of the covariance with shorter localization lengths. However, the analyses obtained by using longer localization lengths tend to be more accurate than those produced by using short localization lengths or the nonparametric approach. This seemingly paradoxical result is explained by showing that localization with longer localization lengths produces filtered estimates whose time mean is the most similar to the time mean of both the unfiltered estimate and the true covariance. This result suggests that a better metric of covariance filtering skill would be one that combined a measure of closeness to the sample covariance matrix for a very large ensemble with a measure of similarity between the climatological averages of the filtered and sample covariance.



2013 ◽  
Vol 60 ◽  
pp. 39-50 ◽  
Author(s):  
Angélique Ponçot ◽  
Jean-Philippe Argaud ◽  
Bertrand Bouriquet ◽  
Patrick Erhard ◽  
Serge Gratton ◽  
...  


2014 ◽  
Vol 7 (4) ◽  
pp. 4291-4352
Author(s):  
G. Descombes ◽  
T. Auligné ◽  
F. Vandenberghe ◽  
D. M. Barker

Abstract. The specification of state background error statistics is a key component of data assimilation since it affects the impact observations will have on the analysis. In the variational data assimilation approach, applied in geophysical sciences, the dimensions of the background error covariance matrix (B) are usually too large to be explicitly determined and B needs to be modeled. Recent efforts to include new variables in the analysis such as cloud parameters and chemical species have required the development of the code to GENerate the Background Errors (GEN_BE) version 2.0 for the Weather Research and Forecasting (WRF) community model to allow for a simpler, flexible, robust, and community-oriented framework that gathers methods used by meteorological operational centers and researchers. We present the advantages of this new design for the data assimilation community by performing benchmarks and showing some of the new features on data assimilation test cases. As data assimilation for clouds remains a challenge, we present a multivariate approach that includes hydrometeors in the control variables and new correlated errors. In addition, the GEN_BE v2.0 code is employed to diagnose error parameter statistics for chemical species, which shows that it is a tool flexible enough to involve new control variables. While the generation of the background errors statistics code has been first developed for atmospheric research, the new version (GEN_BE v2.0) can be easily extended to other domains of science and be chosen as a testbed for diagnostic and new modeling of B. Initially developed for variational data assimilation, the model of the B matrix may be useful for variational ensemble hybrid methods as well.



Sign in / Sign up

Export Citation Format

Share Document