scholarly journals Nonlinear q-fractional differential equations with nonlocal and sub-strip type boundary conditions

Author(s):  
Bashir Ahmad ◽  
Sotiris Ntouyas ◽  
Ahmed Alsaedi ◽  
Hana Al-Hutami
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Haiyan Zhang ◽  
Yaohong Li ◽  
Jingbao Yang

In this paper, we introduce new sequential fractional differential equations with mixed-type boundary conditions CDq+kCDq−1ut=ft,ut,CDq−1ut,t∈0,1,α1u0+β1u1+γ1Iruη=ε1,η∈0,1,α2u′0+β2u′1+γ2Iru′η=ε2, where q∈1,2 is a real number, k,r>0,αi,βi,γi,εi∈ℝ,i=1,2,CDq is the Caputo fractional derivative, and the boundary conditions include antiperiodic and Riemann-Liouville fractional integral boundary value cases. Our approach to treat the above problem is based upon standard tools of fixed point theory and some new inequalities of norm form. Some existence results are obtained and well illustrated through the aid of examples.


2018 ◽  
Vol 24 (1) ◽  
pp. 73-94 ◽  
Author(s):  
Fang Wang ◽  
Lishan Liu ◽  
Debin Kong ◽  
Yonghong Wu

In this article, we study a class of nonlinear fractional differential equations with mixed-type boundary conditions. The fractional derivatives are involved in the nonlinear term and the boundary conditions. By using the properties of the Green function, the fixed point index theory and the Banach contraction mapping principle based on some available operators, we obtain the existence of positive solutions and a unique positive solution of the problem. Finally, two examples are given to demonstrate the validity of our main results.


2021 ◽  
Vol 19 (1) ◽  
pp. 760-772
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Badrah Alghamdi ◽  
Sotiris K. Ntouyas

Abstract We study a nonlinear system of Riemann-Liouville fractional differential equations equipped with nonseparated semi-coupled integro-multipoint boundary conditions. We make use of the tools of the fixed-point theory to obtain the desired results, which are well-supported with numerical examples.


Author(s):  
Wei Jiang ◽  
Zhong Chen ◽  
Ning Hu ◽  
Yali Chen

AbstractIn recent years, the study of fractional differential equations has become a hot spot. It is more difficult to solve fractional differential equations with nonlocal boundary conditions. In this article, we propose a multiscale orthonormal bases collocation method for linear fractional-order nonlocal boundary value problems. In algorithm construction, the solution is expanded by the multiscale orthonormal bases of a reproducing kernel space. The nonlocal boundary conditions are transformed into operator equations, which are involved in finding the collocation coefficients as constrain conditions. In theory, the convergent order and stability analysis of the proposed method are presented rigorously. Finally, numerical examples show the stability, accuracy and effectiveness of the method.


2015 ◽  
Vol 65 (1) ◽  
Author(s):  
Yiliang Liu ◽  
Liang Lu

AbstractIn this paper, we deal with multiple solutions of fractional differential equations with p-Laplacian operator and nonlinear boundary conditions. By applying the Amann theorem and the method of upper and lower solutions, we obtain some new results on the multiple solutions. An example is given to illustrate our results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ahmed Alsaedi ◽  
Soha Hamdan ◽  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

AbstractThis paper is concerned with the solvability of coupled nonlinear fractional differential equations of different orders supplemented with nonlocal coupled boundary conditions on an arbitrary domain. The tools of the fixed point theory are applied to obtain the criteria ensuring the existence and uniqueness of solutions of the problem at hand. Examples illustrating the main results are presented.


Sign in / Sign up

Export Citation Format

Share Document