scholarly journals Asymptotic behavior of solutions to difference equations in Banach spaces

Author(s):  
Janusz Migda

We investigate the asymptotic properties of solutions to higher order nonlinear difference equations in Banach spaces. We introduce a new technique based on a vector version of discrete L'Hospital's rule, remainder operator, and the regional topology on the space of all sequences on a given Banach space. We establish sufficient conditions for the existence of solutions with prescribed asymptotic behavior. Moreover, we are dealing with the problem of approximation of solutions. Our technique allows us to control the degree of approximation of solutions.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Janusz Migda ◽  
Małgorzata Migda ◽  
Magdalena Nockowska-Rosiak

We consider the discrete Volterra type equation of the form Δ(rnΔxn)=bn+∑k=1nK(n,k)f(xk). We present sufficient conditions for the existence of solutions with prescribed asymptotic behavior. Moreover, we study the asymptotic behavior of solutions. We use o(ns), for given nonpositive real s, as a measure of approximation.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 918
Author(s):  
Janusz Migda ◽  
Małgorzata Migda ◽  
Ewa Schmeidel

We investigate the higher order nonlinear discrete Volterra equations. We study solutions with prescribed asymptotic behavior. For example, we establish sufficient conditions for the existence of asymptotically polynomial, asymptotically periodic or asymptotically symmetric solutions. On the other hand, we are dealing with the problem of approximation of solutions. Among others, we present conditions under which any bounded solution is asymptotically periodic. Using our techniques, based on the iterated remainder operator, we can control the degree of approximation. In this paper we choose a positive non-increasing sequence u and use o(un) as a measure of approximation.


2011 ◽  
Vol 2011 ◽  
pp. 1-12
Author(s):  
Pavel Řehák

We derive necessary and sufficient conditions for (some or all) positive solutions of the half-linearq-difference equationDq(Φ(Dqy(t)))+p(t)Φ(y(qt))=0,t∈{qk:k∈N0}withq>1,Φ(u)=|u|α−1sgn⁡uwithα>1, to behave likeq-regularly varying orq-rapidly varying orq-regularly bounded functions (that is, the functionsy, for which a special limit behavior ofy(qt)/y(t)ast→∞is prescribed). A thorough discussion on such an asymptotic behavior of solutions is provided. Related Kneser type criteria are presented.


2020 ◽  
Vol 14 (1) ◽  
pp. 1-19
Author(s):  
Janusz Migda ◽  
Małgorzata Migda ◽  
Magdalena Nockowska-Rosiak

We consider the difference equation of the form ?(rn?(pn?xn)) = anf (x?(n)) + bn. We present sufficient conditions under which, for a given solution y of the equation ?(rn?(pn?yn)) = 0, there exists a solution x of the nonlinear equation with the asymptotic behavior xn = yn + zn, where z is a sequence convergent to zero. Our approach allows us to control the degree of approximation, i.e., the rate of convergence of the sequence We examine two types of approximation: harmonic approximation when zn = o(ns), s ? 0, and geometric approximation when zn = o(?n), ? ? (0, 1).


2008 ◽  
Vol 2008 ◽  
pp. 1-18 ◽  
Author(s):  
E. Messina ◽  
Y. Muroya ◽  
E. Russo ◽  
A. Vecchio

We consider nonlinear difference equations of unbounded order of the formxi=bi−∑j=0iai,jfi−j(xj),  i=0,1,2,…,wherefj(x)  (j=0,…,i)are suitable functions. We establish sufficient conditions for the boundedness and the convergence ofxiasi→+∞. Some of these conditions are interesting mainly for studying stability of numerical methods for Volterra integral equations.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Limei Dai

AbstractIn this paper, we study the Monge–Ampère equations $\det D^{2}u=f$ det D 2 u = f in dimension two with f being a perturbation of $f_{0}$ f 0 at infinity. First, we obtain the necessary and sufficient conditions for the existence of radial solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a unit ball. Then, using the Perron method, we get the existence of viscosity solutions with prescribed asymptotic behavior at infinity to Monge–Ampère equations outside a bounded domain.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Raffaela Capitanelli ◽  
Maria Agostina Vivaldi

AbstractIn this paper, we study asymptotic behavior of solutions to obstacle problems for p-Laplacians as {p\to\infty}. For the one-dimensional case and for the radial case, we give an explicit expression of the limit. In the n-dimensional case, we provide sufficient conditions to assure the uniform convergence of the whole family of the solutions of obstacle problems either for data f that change sign in Ω or for data f (that do not change sign in Ω) possibly vanishing in a set of positive measure.


Sign in / Sign up

Export Citation Format

Share Document