scholarly journals Asymptotic properties of solutions of third order difference equations

2020 ◽  
Vol 14 (1) ◽  
pp. 1-19
Author(s):  
Janusz Migda ◽  
Małgorzata Migda ◽  
Magdalena Nockowska-Rosiak

We consider the difference equation of the form ?(rn?(pn?xn)) = anf (x?(n)) + bn. We present sufficient conditions under which, for a given solution y of the equation ?(rn?(pn?yn)) = 0, there exists a solution x of the nonlinear equation with the asymptotic behavior xn = yn + zn, where z is a sequence convergent to zero. Our approach allows us to control the degree of approximation, i.e., the rate of convergence of the sequence We examine two types of approximation: harmonic approximation when zn = o(ns), s ? 0, and geometric approximation when zn = o(?n), ? ? (0, 1).

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Janusz Migda ◽  
Małgorzata Migda ◽  
Magdalena Nockowska-Rosiak

We consider the discrete Volterra type equation of the form Δ(rnΔxn)=bn+∑k=1nK(n,k)f(xk). We present sufficient conditions for the existence of solutions with prescribed asymptotic behavior. Moreover, we study the asymptotic behavior of solutions. We use o(ns), for given nonpositive real s, as a measure of approximation.


2019 ◽  
Vol 6 (1) ◽  
pp. 57-64 ◽  
Author(s):  
P. Dinakar ◽  
S. Selvarangam ◽  
E. Thandapani

AbstractThis paper deals with oscillatory and asymptotic behavior of all solutions of perturbed nonlinear third order functional difference equation\Delta {\left( {{b_n}\Delta ({a_n}(\Delta {x_n}} \right)^\alpha })) + {p_n}f\left( {{x_{\sigma \left( n \right)}}} \right) = g\left( {n,{x_n},{x_{\sigma (n)}},\Delta {x_n}} \right),\,\,\,n \ge {n_0}.By using comparison techniques we present some new sufficient conditions for the oscillation of all solutions of the studied equation. Examples illustrating the main results are included.


2018 ◽  
Vol 14 (2) ◽  
pp. 7806-7811
Author(s):  
Jai Kumar S ◽  
K. Alagesan

  The author presents some sufficient conditions for second order difference equation with damping term of the form                                                                             ^(an ^(xn + cxn-k)) + pn^xn + qnf(xn+1-l) = 0 An example is given to illustrate the main results. 2010 AMS Subject Classification: 39A11 Keywords and Phrases: Second order, difference equation, damping term.


Author(s):  
Janusz Migda

We investigate the asymptotic properties of solutions to higher order nonlinear difference equations in Banach spaces. We introduce a new technique based on a vector version of discrete L'Hospital's rule, remainder operator, and the regional topology on the space of all sequences on a given Banach space. We establish sufficient conditions for the existence of solutions with prescribed asymptotic behavior. Moreover, we are dealing with the problem of approximation of solutions. Our technique allows us to control the degree of approximation of solutions.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 918
Author(s):  
Janusz Migda ◽  
Małgorzata Migda ◽  
Ewa Schmeidel

We investigate the higher order nonlinear discrete Volterra equations. We study solutions with prescribed asymptotic behavior. For example, we establish sufficient conditions for the existence of asymptotically polynomial, asymptotically periodic or asymptotically symmetric solutions. On the other hand, we are dealing with the problem of approximation of solutions. Among others, we present conditions under which any bounded solution is asymptotically periodic. Using our techniques, based on the iterated remainder operator, we can control the degree of approximation. In this paper we choose a positive non-increasing sequence u and use o(un) as a measure of approximation.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
S. H. Saker ◽  
S. Selvarangam ◽  
S. Geetha ◽  
E. Thandapani ◽  
J. Alzabut

AbstractIn this paper, we establish some sufficient conditions which ensure that the solutions of the third order delay difference equation with a negative middle term $$ \Delta \bigl(a_{n}\Delta (\Delta w_{n})^{\alpha } \bigr)-p_{n}(\Delta w_{n+1})^{ \alpha }-q_{n}h(w_{n-l})=0,\quad n\geq n_{0}, $$ Δ ( a n Δ ( Δ w n ) α ) − p n ( Δ w n + 1 ) α − q n h ( w n − l ) = 0 , n ≥ n 0 , are oscillatory. Moreover, we study the asymptotic behavior of the nonoscillatory solutions. Two illustrative examples are included for illustration.


Filomat ◽  
2019 ◽  
Vol 33 (9) ◽  
pp. 2751-2770
Author(s):  
Aleksandra Kapesic ◽  
Jelena Manojlovic

Positive decreasing solutions of the nonlinear difference equation ?(pn|?xn|?-1?xn)=qn|xn+1|?-1xn+1, n ? 1, ? > ? > 0, are studied under the assumption that p; q are regularly varying sequences. Necessary and sufficient conditions are established for the existence of regularly varying strongly decreasing solutions and it is shown that the asymptotic behavior of all such solutions is governed by a unique formula.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
R. Abo-Zeid ◽  
H. Kamal

AbstractIn this paper, we solve and study the global behavior of the admissible solutions of the difference equation $$\begin{aligned} x_{n+1}=\frac{x_{n}x_{n-2}}{-ax_{n-1}+bx_{n-2}}, \quad n=0,1,\ldots , \end{aligned}$$ x n + 1 = x n x n - 2 - a x n - 1 + b x n - 2 , n = 0 , 1 , … , where $$a, b>0$$ a , b > 0 and the initial values $$x_{-2}$$ x - 2 , $$x_{-1}$$ x - 1 , $$x_{0}$$ x 0 are real numbers.


2012 ◽  
Vol 43 (3) ◽  
pp. 375-384
Author(s):  
Raafat Abo-zeid

The aim of this paper is to investigate the global stability and periodic nature of the positive solutions of the difference equation\[x_{n+1}=\frac{A+Bx_{n-1}}{C+Dx_{n}x_{n-2}},\qquad n=0,1,2,\ldots\] where $A,B$ are nonnegative real numbers and$C, D>0$.


1986 ◽  
Vol 9 (4) ◽  
pp. 781-784 ◽  
Author(s):  
B. Smith

In this paper, asymptotic properties of solutions ofΔ3Vn+Pn−1Vn+1=0          (E+)are investigated via the quasi-adjoint equationΔ3Un+PnUn+2=0.             (E−)A necessary and sufficient condition for the existence of oscillatory solutions of(E+)is given. An example showing that it is possible for(E+)to have only nonoscillatory solutions is also given.


Sign in / Sign up

Export Citation Format

Share Document