scholarly journals Theoretical Evaluation on The Interaction Between Triglycerides and Methylxanthines Using Density Functional Theory B3LYP/6-31G(d,p) and Molecular Electrostatic Potential

2020 ◽  
Vol 33 (1) ◽  
pp. 171-178
Author(s):  
N.F.M. Azmi ◽  
R. Ali ◽  
A.A. Azmi ◽  
M.Z.H. Rozaini ◽  
K.H.K. Bulat ◽  
...  

The binding, interaction and distortion energies between the main triglycerides, palmitic-oleic-stearic (POS) in cocoa butter versus palmitic-oleic-palmitic (POP) in refined, bleached and deodorized (RBD) palm oil with cocoa′s methylxanthines (caffeine, theobromine, and theophylline) during the production of chocolate were theoretically studied and reported. The quantum mechanical software package of Gaussian09 at the theoretical level of density functional theory B3LYP/6-31G(d,p) was employed for all calculations, optimization, and basis set superposition errors (BSSE). Geometry optimizations were carried out to the minimum potential energy of individual species and binary complexes formed between the triglycerides, methylxanthines and polyphenols. The interaction energies for the optimized complexes were then corrected for the BSSE using the counterpoise method of Boys and Bernardi. The results revealed that the binding energy and interaction energy between methylxanthine components in cocoa powder with triglycerides were almost of the same magnitude (13.6-14.5 and 3.4-3.7 kJ/mol, respectively), except for the binary complex of POS-caffeine (25.1 and 10.7 kJ/mol, respectively). Based on the molecular geometry results, the hydrogen bond length and angle correlated well with the interaction energies. Meanwhile, the POS-caffeine complex with two higher and almost linear bond angles showed higher binding and interaction energies as compared to the other methylxanthines. Therefore, a donor-acceptor analysis showed that the hydrogen bond strength was proven using the molecular electrostatic potential (MEP), which resulted in parallel outcomes. The research results were believed to be one of the factors that contributed to the rheological behaviour and sensory perception of cocoa products, especially chocolate.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Snehanshu Pal ◽  
T. K. Kundu

A detailed quantum chemical calculation based study of hydrogen bond formation in trimethylene glycol- (TMG-) water complex has been performed by Hatree-Fock (HF) method, second-order Møller-Plesset perturbation theory (MP2), density functional theory (DFT), and density functional theory with dispersion function (DFT-D) using 6-31++G(d,p) basis set. B3LYP DFT-D, WB97XD, M06, and M06-2X functionals are used to capture highly dispersive hydrogen bond formation. Geometrical parameters, interaction energy, deviation of potential energy curve of hydrogen-bonded O–H from that of free O–H, natural bond orbital (NBO), atom in molecule (AIM), charge transfer, and red shift are investigated. It is observed that hydrogen bond between TMG and water molecule is stronger in case of TMG acting as proton donor compared to that of water acting as proton donor, and dilute TMG solution would inhibit water cluster formation.


2016 ◽  
Vol 94 (6) ◽  
pp. 583-593 ◽  
Author(s):  
Feride Akman

In the present work, two-armed macroinitiator containing coumarin were synthesized, characterized by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance techniques and investigated theoretically using density functional theory (DFT) calculations. The molecular geometry, fundamental vibrational frequencies, atomic charges obtained from atomic polar tensors and Mulliken were analyzed by means of structure optimizations based on the DFT method with 6-31G+(d, p) as a basis set. The 1H chemical shifts were calculated by the gauge-including atomic orbital method and compared with available experimental data. The electronic properties, such as highest occupied molecular orbital – lowest unoccupied molecular orbital (HOMO–LUMO) energies, electron affinity, electronegativity, ionization energy, hardness, chemical potential, global softness, and global electrophilicity were calculated by using the DFT method. The electrostatic potential and molecular electrostatic potential surfaces were performed to predict the reactive sites of the two-armed macroinitiator. The energy difference between acceptor and donor and stabilization energy were determined using natural bond orbital analysis. The results show that the occurrence of intramolecular charge transfers within the polymer. Time-dependent density functional theory calculations of visible spectra were analyzed at different solvents. Finally, thermodynamic functions, such as enthalpy, heat capacity, and entropy, of the two-armed macroinitiator at different temperatures were calculated and the relationship with temperature was investigated.


2016 ◽  
Vol 835 ◽  
pp. 308-314
Author(s):  
Pek Lan Toh ◽  
Rosfayanti Rasmidi ◽  
Montha Meepripruk ◽  
Lee Sin Ang ◽  
Shukri Sulaiman ◽  
...  

In this paper, we report the first principles Density Functional Theory (DFT) calculation to study the structural, energetic, and electronics properties of the 6–Bromo–4–Oxo–4H–Chromene–3–Carbaldehyde, C10H5BrO3 molecular framework. Geometry optimization technique was carried out to find the local energy minimum of the title compound using four hybrid DFT functionals with the basis set of 6–311++G**. The optimized molecular structure of C10H5BrO3 cluster was then used to determine the HOMO–LUMO gaps, Molecular Electrostatic Potential (MEP), Mulliken atomic charges, and others. Using the four hybrid DFT techniques, the optimized geometries of C10H5BrO3 molecular cluster is close to that of measurement data. Our calculation results also show that the total energies obtained are close to each other with the four hybrid DFT procedures. The diagram of electrostatic potential surface show that the regions of negative electrostatic potential around the oxygen atoms, O1 and O2. Using the scheme of Mulliken Population Analysis (MPA), the distributions of atomic charges follow the same arguments for the B3LYP/6–311++G**, B3PW91/6–311++G**, M06/6–311++G**, and PBE1PBE/6–311++G** simulation approaches. For example, the atom of C5 has the highest positively charge, whereas the highest negatively charge was found in the C4 atom. For Br atom, the atomic charge values obtained are –0.158, –0.222, –0.277, and –0.224, respectively for the B3LYP/6–311++G**, B3PW91/6–311++G**, M06/6–311++G**, and PBE1PBE/6–311++G** computational methods.


2021 ◽  
Vol 21 (6) ◽  
pp. 1537
Author(s):  
Daru Seto Bagus Anugrah ◽  
Laura Virdy Darmalim ◽  
Permono Adi Putro ◽  
Liana Dewi Nuratikah ◽  
Nurwarrohman Andre Sasongko ◽  
...  

The high application of Poly(styrene-maleic acid) (PSMA) in an aqueous environment, such as biomedical purposes, makes the interaction between PSMA and water molecules interesting to be investigated. This study evaluated the conformation, the hydrogen bond network, and the stabilities of all the possible intermolecular interactions between PSMA with water (PSMA−(H2O)n, n = 1–5). All calculations were executed using the density functional theory (DFT) method at B3LYP functional and the 6–311G** basis set. The energy interaction of PSMA–(H2O)5 complex was –56.66 kcal/mol, which is classified as high hydrogen bond interaction. The Highest Occupied Molecular Orbital (HOMO) – Lowest Unoccupied Molecular Orbital (LUMO) energy gap decreased with the rise in the number of H2O molecules, representing a more reactive complex. The strongest hydrogen bonding in PSMA–(H2O)5 wasformed through the interaction on O72···O17–H49 with stabilizing energy of 50.32 kcal/mol, that analyzed by natural bond orbital (NBO) theory. The quantum theory atoms in molecules (QTAIM) analysis showed that the hydrogen bonding (EHB) value on O72···O17–H49 was –14.95 kcal/mol. All computational data revealed that PSMA had moderate to high interaction with water molecules that indicated the water molecules were easily transported and kept in the PSMA matrix.


2021 ◽  
Vol 9 (1) ◽  
pp. 4-11

The structure-property relationship is important in understanding molecular behaviors and their best-fit areas of applications. 3-(4-hydroxyphenyl) prop-2-en-1-one 4-phenyl Schiff base and some of its derivatives were optimized via the density functional theory with Becke three Lee Yang Parr correlation and 6-31G* basis set. The molecular properties calculated were the energies of the frontier molecular orbitals [highest occupied molecular orbital (EHOMO), lowest unoccupied molecular orbital (ELUMO), energy bandgap (Eg), chemical hardness (η), softness (S) and hyperpolarizabilities (β)]. The electronic transitions were calculated with the time-dependent density functional theory methods, the absorption maxima (λabs), vertical transition energies (ΔEge), oscillator strengths (f) and molecular orbital (MO) components with their percentage contributions were obtained. The anti-microbial efficacy of the molecules was tested against Staphylococcus aureus aminopeptidase S (AmpS) active site to predict the binding affinities. ADMEtox parameters of all the molecules were also investigated. Eg values ranged from 3.13 to 3.95 eV, β values ranged from 1.45 to 5.81×10-30 esu, and their binding affinities ranged from -4.57 to -6.12 kcal/mol, all were more than that of standard drug, streptomycin (-4.31 kcal/mol). The number of hydrogen bond donors and hydrogen bond acceptors were ranged from 1 to 2 and 3.75 to 5.25, respectively. Variations observed from the calculated molecular properties are the result of varying substituent groups. The molecules can be used as nonlinear optical (NLO) materials and also showed potential for being effective against Staphylococcus aureus.


Sign in / Sign up

Export Citation Format

Share Document