scholarly journals EXPERIMENTAL RESEARCH OF MECHANICAL PROPERTIES OF HIGH-STRENGTH CONCRETE USING BLAST FURNACE SLAG AS FINE AGGREGATE

2010 ◽  
Vol 64 (1) ◽  
pp. 184-189 ◽  
Author(s):  
Dongsheng SHI ◽  
Yoshihiro MASUDA ◽  
Youngran LEE
2011 ◽  
Vol 217-218 ◽  
pp. 113-118 ◽  
Author(s):  
Dong Sheng Shi ◽  
Yoshihiro Masuda ◽  
Young Ran Lee

In this experiment, blast furnace slag fine aggregate that was produced by 3 different steel factory was been used in high-strength concrete, and mechanical properties of high-strength concrete were studied. The concrete using the blast furnace slag fine aggregate is admitted the increase of compressive strength as well as the case of the river sand when the water cement ratio is reduced, and the compressive strength can attain 100N/mm2. The strength of concrete using blast furnace slag fine aggregate is lower than the strength of concrete using natural river sand as fine aggregate, and the strength of concrete using mixture fine aggregate is middle of strength used river sand and strength used blast furnace slag fine aggregate. The crushing value of blast furnace slag fine aggregate is bigger than the natural river sand, and it could influence the strength of high-strength concrete using blast furnace slag fine aggregate.


Structures built with normal concrete are fading out from the construction industry due to the development of high strength concrete. The massive structures such as sky scrapers, bridges, tunnels, nuclear plants, underground structures need high strength concrete to withstand the high intensity vertical, horizontal and moving loads etc. The development of high strength alkaline activated concrete will reduce the usage of cement in construction community. Lesser the utilisation of cement will lessen the high emission of carbon dioxide gas into the atmosphere. In this study, high strength concrete using alumina and silica rich materials are made with a mix ratio of 1:1.31:2.22. The water to cement ratio for high strength cement concrete and the alkaline solution to binder ratio for alkaline activated concrete are kept as 0.35. Low calcium fly ash, Ground Granulated Blast Furnace Slag (GGBS) and Metakaolin are used as binders and Manufacturing Sand is used as fine aggregate to made high strength alkaline activated concrete. The high strength alkaline activated concrete tests results are better than the high strength cement concrete.


Sign in / Sign up

Export Citation Format

Share Document