Robust Adaptive and Sliding Mode Synchronization of Uncertain Chaotic Systems

2016 ◽  
Vol 9 (1) ◽  
pp. 129-140
Author(s):  
Cheng Gan ◽  
Zhaorui Ma ◽  
Junwei Lei ◽  
Ruiqi Wang
2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yan Yan

This paper deals with the synchronization of a class of fractional order chaotic systems with unknown parameters and external disturbance. Based on the Lyapunov stability theory, a fractional order sliding mode is constructed and a controller is proposed to realize chaos synchronization. The presented method not only realizes the synchronization of the considered chaotic systems but also enhances the robustness of sliding mode synchronization. Finally, some simulation results demonstrate the effectiveness and robustness of the proposed method.


Author(s):  
Samaneh Mohammadpour ◽  
Tahereh Binazadeh

This paper considers the robust synchronization of chaotic systems in the presence of nonsymmetric input saturation constraints. The synchronization happens between two nonlinear master and slave systems in the face of model uncertainties and external disturbances. A new adaptive sliding mode controller is designed in a way that the robust synchronization occurs. In this regard, a theorem is proposed, and according to the Lyapunov approach the adaptation laws are derived, and it is proved that the synchronization error converges to zero despite of the uncertain terms in master and slave systems and nonsymmetric input saturation constraints. Finally, the proposed method is applied on chaotic gyro systems to show its applicability. Computer simulations verify the theoretical results and also show the effective performance of the proposed controller.


2008 ◽  
Vol 18 (08) ◽  
pp. 2425-2435 ◽  
Author(s):  
SAMUEL BOWONG ◽  
RENÉ YAMAPI

This study addresses the adaptive synchronization of a class of uncertain chaotic systems in the drive-response framework. For a class of uncertain chaotic systems with parameter mismatch and external disturbances, a robust adaptive observer based on the response system is constructed to practically synchronize the uncertain drive chaotic system. Lyapunov stability theory ensures the practical synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of two illustrative examples are given to verify the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document