scholarly journals Periodization in Cluster Dynamical Mean-Field Theory

Author(s):  
Malte Harland ◽  
Igor Krivenko ◽  
Alexander Lichtenstein

The Dynamical Mean Field Theory (DMFT) maps the lattice problem onto a single site coupled to an electron bath, i.e. the Mean Field. To include spatial correlations we use CDMFT, the cluster extension that connects a cluster of many correlated sites to an electron bath with a matrix-valued hybridization function. Whereas there is only one possible DMFT scheme for the single site, there are different schemes proposed for cluster calculations. They differ in the way they incorporate the lattice symmetry into the cluster calculation done by the impurity solver. We present a comparison of the self-energy and the cumulant periodization for different cluster sizes, applying it to a 1-dimensional chain as well as to the frustrated Kagome lattice. The CDMFT scheme we use is formulated in the real space. We solve the Hubbard cluster impurity model within a Hybridization Expansion Quantum Monte Carlo solver and compare the lattice Green’s function and the local density of states to results of the Density Matrix Renormalization Group method.

2006 ◽  
Vol 986 ◽  
Author(s):  
Leniod Purovskii ◽  
Alexander Shick ◽  
Ladislav Havela ◽  
Mikhail Katsnelson ◽  
Alexander Lichtenstein

AbstractLocal density approximation for the electronic structure calculations has been highly successful for non-correlated systems. The LDA scheme quite often failed for strongly correlated materials containing transition metals and rare-earth elements with complicated charge, spin and orbital ordering. Dynamical mean field theory in combination with the first-principle scheme (LDA+DMFT) can be a starting point to go beyond static density functional approximation and include effects of charge, spin and orbital fluctuations. Ab-initio relativistic dynamical mean-field theory is applied to resolve the long-standing controversy between theory and experiment in the “simple” face-centered cubic phase of plutonium called δ-Pu. In agreement with experiment, neither static nor dynamical magnetic moments are predicted. In addition, the quasiparticle density of states reproduces not only the peak close to the Fermi level, which explains the large coefficient of electronic specific heat, but also main 5f features observed in photoelectron spectroscopy.


2018 ◽  
Vol 98 (3) ◽  
Author(s):  
Irakli Titvinidze ◽  
Max E. Sorantin ◽  
Antonius Dorda ◽  
Wolfgang von der Linden ◽  
Enrico Arrigoni

Sign in / Sign up

Export Citation Format

Share Document