scholarly journals Chronology protection conjecture may not hold

Author(s):  
Wen-Xiang Chen

The cosmic censorship hypothesis has not been directly verified, and some physicists also question the validity of the cosmological censorship hypothesis. Through theoretical prediction, it pointed out that the existence of naked singularities is possible.This article puts forward a point that, under the quantum gravity equation, although there is no concept of wormholes, the chronology protection conjecture may not be true.

2002 ◽  
Vol 17 (20) ◽  
pp. 2747-2747
Author(s):  
A. BEESHAM

The singularity theorems of general relativity predict that gravitational collapse finally ends up in a spacetime singularity1. The cosmic censorship hypothesis (CCH) states that such a singularity is covered by an event horizon2. Despite much effort, there is no rigorous formulation or proof of the CCH. In view of this, examples that appear to violate the CCH and lead to naked singularities, in which non-spacelike curves can emerge, rather than black holes, are important to shed more light on the issue. We have studied several collapse scenarios which can lead to both situations3. In the case of the Vaidya-de Sitter spacetime4, we have shown that the naked singularities that arise are of the strong curvature type. Both types of singularities can also arise in higher dimensional Vaidya and Tolman-Bondi spacetimes, but black holes are favoured in some sense by the higher dimensions. The charged Vaidya-de Sitter spacetime also exhibits both types of singularities5.


2011 ◽  
Vol 20 (12) ◽  
pp. 2317-2335 ◽  
Author(s):  
KANG ZHOU ◽  
ZHAN-YING YANG ◽  
DE-CHENG ZOU ◽  
RUI-HONG YUE

We investigate the spherically symmetric gravitational collapse of an incoherent dust cloud by considering a LTB-type spacetime in third-order Lovelock Gravity without cosmological constant, and give three families of LTB-like solutions which separately corresponding to hyperbolic, parabolic and elliptic. Notice that the contribution of high-order curvature corrections have a profound influence on the nature of the singularity, and the global structure of spacetime changes drastically from the analogous general relativistic case. Interestingly, the presence of high order Lovelock terms leads to the formation of massive, naked and timelike singularities in the 7D spacetime, which is disallowed in general relativity. Moveover, we point out that the naked singularities in the 7D case may be gravitational weak therefore may not be a serious threat to the cosmic censorship hypothesis, while the naked singularities in the D ≥ 8 inhomogeneous collapse violate the cosmic censorship hypothesis seriously.


2005 ◽  
Vol 20 (24) ◽  
pp. 1823-1829 ◽  
Author(s):  
LI XIANG ◽  
YOU-GEN SHEN

In this paper two consequences of the generalized uncertainty principle (GUP) are discussed in a heuristic manner. Both could be regarded as the evidences that prefer the cosmic censorship hypothesis (CCH). The first one is that the second law tends to decline the massless charged particles if the effects of the GUP on the thermodynamics of a de Sitter spacetime are considered. This weakens the threat to the horizon of an extreme charged black hole. The second one is that the uv/ir correspondence provides a constraint on the relation between the energy and the size of a system, which is incompatible to the naked singularities.


2006 ◽  
Vol 15 (09) ◽  
pp. 1359-1371 ◽  
Author(s):  
K. D. PATIL ◽  
S. S. ZADE

We generalize the earlier studies on the spherically symmetric gravitational collapse in four-dimensional space–time to higher dimensions. It is found that the central singularities may be naked in higher dimensions but depend sensitively on the choices of the parameters. These naked singularities are found to be gravitationally strong that violate the cosmic censorship hypothesis.


1997 ◽  
Vol 12 (30) ◽  
pp. 2237-2242
Author(s):  
Wiesław Rudnicki

According to the cosmic censorship hypothesis of Penrose, naked singularities should never occur in realistic collapse situations. One of the major open problems in this context is the existence of a naked singularity in the Kerr solution with |a|>m; this singularity can be interpreted as the final product of collapse of a rapidly rotating object. Assuming that certain very general and physically reasonable conditions hold, we show here, using the global techniques, that a realistic gravitational collapse of any rotating object, which develops from a regular initial state, cannot lead to the formation of a final state resembling the Kerr solution with a naked singularity. This result supports the validity of the cosmic censorship hypothesis.


2003 ◽  
Vol 12 (05) ◽  
pp. 801-809 ◽  
Author(s):  
A. BEESHAM ◽  
S. G. GHOSH

We study the occurrence of naked singularities in the spherically symmetric collapse of a charged null fluid in an expanding de Sitter background — a piece of charged Vaidya–de Sitter spacetime. The naked singularities are found to be gravitationally strong in Tipler's sense and thus violate the cosmic censorship hypothesis.


Axioms ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 52
Author(s):  
Aroonkumar Beesham

The cosmic censorship hypothesis is regarded as one of the most important unsolved problems in classical general relativity; viz., will generic gravitational collapse of a star after it has exhausted its nuclear fuel lead to black holes only, under reasonable physical conditions. We discuss the collapse of a fluid with nonzero radial pressure within the context of the Vaidya spacetime considering a decaying cosmological parameter as well as nonzero charge. Previously, a similar analysis was done, but without considering charge. A decaying cosmological parameter may also be associated with dark energy. We found that both black holes and naked singularities can form, depending upon the initial conditions. Hence, charge does not restore the validity of the hypothesis. This provides another example of the violation of the cosmic censorship hypothesis. We also discuss some radiating rotating solutions, arriving at the same conclusion.


2005 ◽  
Vol 14 (03n04) ◽  
pp. 707-715 ◽  
Author(s):  
S. G. GHOSH

We investigate the occurrence of naked singularities in the gravitational collapse of an inhomogeneous dust cloud in an expanding de Sitter background — a piece of Tolman–Bondi–de Sitter space–time. It turns out that the collapse proceed in the same way as in the Minkowski background, i.e., the strong curvature naked singularities form and thus violate the cosmic censorship conjecture. Our result unambiguously support the fact that the asymptotic flatness of space–time is not a necessary ingredient for the development of naked singularities.


Sign in / Sign up

Export Citation Format

Share Document