scholarly journals Comparative Study of AMPL, Pyomo and JuMP Optimization Modeling Languages on a Flood Control Problem Example

2021 ◽  
Vol 25 (4) ◽  
pp. 19-24
Author(s):  
Andrzej Karbowski ◽  
Krzysztof Wyskiel

The purpose of this work is a comparative study of three languages (environments) of optimization modeling: AMPL, Pyomo and JuMP. The comparison will be based on three implementations of an optimal discrete-time flood control problem formulated as a nonlinear programming problem. The codes for individual models and differences between them will be presented and discussed. Various aspects will be taken into account, e.g. simplicity and intuitiveness of implementation.

2012 ◽  
Vol 433-440 ◽  
pp. 6652-6656 ◽  
Author(s):  
Tao Liu ◽  
Yu Shan Zhao ◽  
Peng Shi ◽  
Bao Jun Li

Trajectory optimization problem for spacecraft proximity rendezvous with path constraints was discussed using direct collocation method. Firstly, the model of spacecraft proximity rendezvous in elliptic orbit optimization control problem was presented, with the dynamic equations established in the target local orbital frame, and the performance index was minimizing the total fuel consumption. After that the optimal control problem was transcribed into a large scale problem of Nonlinear Programming Problem (NLP) by means of Hermite-Simpson discretization, which was one of the direct collocation methods. Then the nonlinear programming problem was solved using MATLAB software package SNOPT. Finally, to verify this method, the fuel-optimal trajectory for finite thrust was planned for proximity rendezvous with elliptic reference orbit. Numerical simulation results demonstrate that the proposed method was feasible, and was not sensitive to the initial condition, having good robustness.


2021 ◽  
Vol 25 (3) ◽  
pp. 23-30
Author(s):  
Andrzej Karbowski ◽  
Krzysztof Wyskiel

The purpose of this work is a comparative study of three languages (environments) of optimization modeling: AMPL, Pyomo and JuMP. The comparison will be based on three implementations of the shortest path problem formulated as a linear programming problem. The codes for individual models and differences between them will be presented and discussed. Various aspects will be taken into account, such as: simplicity and intuitiveness of implementation, availability of specific data structures for a LP network problems, etc.


Author(s):  
Randhir Kumar ◽  
K. Kurien Issac

The problem addressed here is to determine controls for moving a load along specified trajectories which avoid obstacles. It is possible to use flat outputs to determine inputs when hoist motion is present. However, when hoist is locked, the system does not appear to be differentially flat, and hence the above approach could not be used. We propose an iterative algorithm for the problem of calculating trolley motions in this case. Results for load motions requiring (a) travel and traverse of the trolley and hoist, (b) travel and hoist, and (c) travel alone, are presented. We also use flat outputs to formulate the minimum time control problem as a nonlinear programming problem, with constraints arising from limits on trolley and hoist accelerations and velocities, and positive rope tension. Solutions obtained are also presented.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1551
Author(s):  
Bothina El-Sobky ◽  
Yousria Abo-Elnaga ◽  
Abd Allah A. Mousa ◽  
Mohamed A. El-Shorbagy

In this paper, a penalty method is used together with a barrier method to transform a constrained nonlinear programming problem into an unconstrained nonlinear programming problem. In the proposed approach, Newton’s method is applied to the barrier Karush–Kuhn–Tucker conditions. To ensure global convergence from any starting point, a trust-region globalization strategy is used. A global convergence theory of the penalty–barrier trust-region (PBTR) algorithm is studied under four standard assumptions. The PBTR has new features; it is simpler, has rapid convergerce, and is easy to implement. Numerical simulation was performed on some benchmark problems. The proposed algorithm was implemented to find the optimal design of a canal section for minimum water loss for a triangle cross-section application. The results are promising when compared with well-known algorithms.


Author(s):  
Tarunraj Singh

The focus of this paper is on the design of robust input shapers where the maximum value of the cost function over the domain of uncertainty is minimized. This nonlinear programming problem is reformulated as a linear programming problem by approximating a n-dimensional hypersphere with multiple hyperplanes (as in a geodesic dome). A recursive technique to approximate a hypersphere to any level of accuracy is developed using barycentric coordinates. The proposed technique is illustrated on the spring-mass-dashpot and the benchmark floating oscillator problem undergoing a rest-to-rest maneuver. It is shown that the results of the linear programming problem are nearly identical to that of the nonlinear programming problem.


Sign in / Sign up

Export Citation Format

Share Document