scholarly journals Dosimetric Effect of Biozorb Markers for Accelerated Partial Breast Irradiation in Proton Therapy

2021 ◽  
Vol 7 (4) ◽  
pp. 19-28
Author(s):  
Melton D. Parham ◽  
Salahuddin Ahmad ◽  
Hosang Jin

Abstract Purpose To investigate dosimetric implications of biodegradable Biozorb (BZ) markers for proton accelerated partial breast irradiation (APBI) plans. Materials and Methods Six different BZs were placed within in-house breast phantoms to acquire computed tomography (CT) images. A contour correction method with proper mass density overriding for BZ titanium clip and surrounding tissue was applied to minimize inaccuracies found in the CT images in the RayStation planning system. Each breast phantom was irradiated by a monoenergetic proton beam (103.23 MeV and 8×8 cm2) using a pencil-beam scanning proton therapy system. For a range perturbation study, doses were measured at 5 depths below the breast phantoms by using an ionization chamber and compared to the RayStation calculations with 3 scenarios for the clip density: the density correction method (S1: 1.6 g/cm3), raw CT (S2), and titanium density (S3: 4.54 g/cm3). For the local dose perturbation study, the radiographic EDR2 film was placed at 0 and 2 cm below the phantoms and compared to the RayStation calculations. Clinical effects of the perturbations were retrospectively examined with 10 APBI plans for the 3 scenarios (approved by our institutional review board). Results In the range perturbation study, the S1 simulation showed a good agreement with the chamber measurements, while excess pullbacks of 1∼2 mm were found in the S2 and S3 simulations. The film study showed local dose shadowing and perturbation by the clips that RayStation could not predict. In the plan study, no significant differences in the plan quality were found among the 3 scenarios. However, substantial range pullbacks were observed for S3. Conclusion The density correction method could minimize the dose and range difference between measurement and RayStation prediction. It should be avoided to simply override the known physical density of the BZ clips for treatment planning owing to overestimation of the range pullback.

2021 ◽  
Vol 11 (5) ◽  
pp. 410
Author(s):  
Marika Musielak ◽  
Wiktoria M. Suchorska ◽  
Magdalena Fundowicz ◽  
Piotr Milecki ◽  
Julian Malicki

The toxicity of radiotherapy is a key issue when analyzing the eligibility criteria for patients with breast cancer. In order to obtain better results, proton therapy is proposed because of the more favorable distribution of the dose in the patient’s body compared with photon radiotherapy. Scientific groups have conducted extensive research into the improved efficacy and lower toxicity of proton therapy for breast cancer. Unfortunately, there is no complete insight into the potential reasons and prospects for avoiding undesirable results. Cardiotoxicity is considered challenging; however, researchers have not presented any realistic prospects for preventing them. We compared the clinical evidence collected over the last 20 years, providing the rationale for the consideration of proton therapy as an effective solution to reduce cardiotoxicity. We analyzed the parameters of the dose distribution (mean dose, Dmax, V5, and V20) in organs at risk, such as the heart, blood vessels, and lungs, using the following two irradiation techniques: whole breast irradiation and accelerated partial breast irradiation. Moreover, we presented the possible causes of side effects, taking into account biological and technical issues. Finally, we collected potential improvements in higher quality predictions of toxic cardiac effects, like biomarkers, and model-based approaches to give the full background of this complex issue.


2020 ◽  
Vol 152 ◽  
pp. S48-S49
Author(s):  
N. Hoekstra ◽  
S. Habraken ◽  
A. Swaak-Kragten ◽  
S. Breedveld ◽  
J. Pignol ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document