Nonuniform Bond Stress Distribution Model for Evaluation of Bar Development Length

2017 ◽  
Vol 114 (4) ◽  
Author(s):  
Hyeon-Jong Hwang ◽  
Hong-Gun Park ◽  
Wei-Jian Yi
2014 ◽  
Vol 919-921 ◽  
pp. 1377-1380
Author(s):  
Xiao Dong Li ◽  
Hao Chen Feng ◽  
Wei Ning Yuan

This paper mainly gets a equation of crack width calculation. To get the result, the lineared bond-slip model between FRP bars and concrete is used, combining with the bond stress distribution model which is found by You Chunan. Finally, the value of this paper is compared with the value of ACI440.1R-06 and JSCE code, which prove the result is right.


Author(s):  
Elyas Makhmalbaf ◽  
Ghani Razaqpur

Due to the assumption of uniform bond stress, the development length of FRP bars by design standards can be unnecessarily long and difficult to provide in practice. Hence, the bond stress distribution and required development length of a GFRP rebar is investigated. Four beam-bond specimens, two following RILEM specifications and two based on a procedure by ACI are tested to evaluate the effect of test method on bond strength. Ten pullout tests are also performed using the same bar. The two test methods yield similar results, but the ACI test is easier to perform. The bond stress distribution in the beams is highly nonlinear but in the pullout tests approaches uniformity. The actual development length is found to be 50% to 250% less than that required by the foregoing standards. Consequently, a new equation is proposed based on the logistic growth function to model the non-uniform bond stress distribution and estimate the required development length.


2019 ◽  
Vol 116 (2) ◽  
Author(s):  
Hyeon-Jong Hwang ◽  
Hong-Gun Park ◽  
Wei-Jian Yi

2008 ◽  
Vol 575-578 ◽  
pp. 449-454
Author(s):  
Chu Yun Huang ◽  
Sai Yu Wang ◽  
Tao Yang ◽  
Xu Dong Yan

The stress fields of rectangular and T shape compression dies were simulated by three dimensional photo-elasticity of stress freezing method. The rules of stress distribution of σx, σy, σz on the surface of rectangular and T-shaped dies were discovered, and the rules were also found inside the dies. The results indicate that the stress distribution of rectangular die is similar to that of T shape die. Obvious stress concentration in corner of die hole was observed. σz rises from die hole to periphery until it achieves maximum value then it diminishes gradually, and σz between die hole and fix diameter zone is higher than it is in other position. At the same time, the equations of stress field of extrusion dies were obtained by curved surface fitting experimental values in every observed point with multiple-unit regression analysis method and orthogonal transforms. These works can provide stress distribution model for die computer aided design and make.


2022 ◽  
Vol 250 ◽  
pp. 113293
Author(s):  
Ioannis Boumakis ◽  
Krešimir Ninčević ◽  
Marco Marcon ◽  
Jan Vorel ◽  
Roman Wan-Wendner

2011 ◽  
Vol 462-463 ◽  
pp. 1164-1169
Author(s):  
Jing Xiang Yang ◽  
Ya Xin Zhang ◽  
Mamtimin Gheni ◽  
Ping Ping Chang ◽  
Kai Yin Chen ◽  
...  

In this paper, strength evaluations and reliability analysis are conducted for different types of PSSS(Periodically Symmetric Struts Supports) based on the FEA(Finite Element Analysis). The numerical models are established at first, and the PMA(Prestressed Modal Analysis) is conducted. The nodal stress value of all of the gauss points in elements are extracted out and the stress distributions are evaluated for each type of PSSS. Then using nonlinear least squares method, curve fitting is carried out, and the stress probability distribution function is obtained. The results show that although using different number of struts, the stress distribution function obeys the exponential distribution. By using nonlinear least squares method again for the distribution parameters a and b of different exponential functions, the relationship between number of struts and distribution function is obtained, and the mathematical models of the stress probability distribution functions for different supports are established. Finally, the new stress distribution model is introduced by considering the DSSI(Damaged Stress-Strength Interference), and the reliability evaluation for different types of periodically symmetric struts supports is carried out.


Sign in / Sign up

Export Citation Format

Share Document