Crack Calculation of Beams Reinforced with FRP Bars Based on Linear Bond-Slip Model

2014 ◽  
Vol 919-921 ◽  
pp. 1377-1380
Author(s):  
Xiao Dong Li ◽  
Hao Chen Feng ◽  
Wei Ning Yuan

This paper mainly gets a equation of crack width calculation. To get the result, the lineared bond-slip model between FRP bars and concrete is used, combining with the bond stress distribution model which is found by You Chunan. Finally, the value of this paper is compared with the value of ACI440.1R-06 and JSCE code, which prove the result is right.

2010 ◽  
Vol 139-141 ◽  
pp. 340-343
Author(s):  
Zhen Qing Wang ◽  
Zhu Ju ◽  
Yu Lai Han ◽  
Xiao Ji Li

The primary objective of this study is to develop equations of the bond stress and relative slippage between fiber-reinforced polymer (FRP) bars and concrete exposed to different temperature ranging from 20°C to 190°C. Equations were established through theoretical analysis and simulation of the bond-slip constitutive relationship between FRP bars and concrete. According to the expressions, the variations of the bond stress and relative slippage between the two diffident materials can be evaluated at different locations. This paper made the analysis based on the theory of elasticity, using a bilinear model. An example to compare the results between experiment and theory had been proposed. It is indicated that the theoretical analysis here is in good agreement with the experimental data in related literature. The results can be applied to fire resistance design of FRP reinforced concrete structures.


2008 ◽  
Vol 575-578 ◽  
pp. 449-454
Author(s):  
Chu Yun Huang ◽  
Sai Yu Wang ◽  
Tao Yang ◽  
Xu Dong Yan

The stress fields of rectangular and T shape compression dies were simulated by three dimensional photo-elasticity of stress freezing method. The rules of stress distribution of σx, σy, σz on the surface of rectangular and T-shaped dies were discovered, and the rules were also found inside the dies. The results indicate that the stress distribution of rectangular die is similar to that of T shape die. Obvious stress concentration in corner of die hole was observed. σz rises from die hole to periphery until it achieves maximum value then it diminishes gradually, and σz between die hole and fix diameter zone is higher than it is in other position. At the same time, the equations of stress field of extrusion dies were obtained by curved surface fitting experimental values in every observed point with multiple-unit regression analysis method and orthogonal transforms. These works can provide stress distribution model for die computer aided design and make.


Author(s):  
Cheng Jiang ◽  
Qian-Qian Yu ◽  
Xiang-Lin Gu
Keyword(s):  

Author(s):  
Katarzyna Zdanowicz ◽  
Boso Schmidt ◽  
Hubert Naraniecki ◽  
Steffen Marx

<p>The bond behaviour of concrete specimens with carbon textile reinforcement was investigated in the presented research programme. Pull-out specimens were cast from self-compacting concrete with expansive admixtures and in this way chemical prestress was introduced. The aim of the research was to compare bond behaviour between prestressed specimens and non-prestressed control specimens. During pull-out tests, the pull-out force and notch opening were measured with a load cell and laser sensors. Further, bond - slip and pull-out force - crack width relationships were drawn and compared for prestressed and non-prestressed specimens. Chemically prestressed specimens reached 24% higher bond strength than non-prestressed ones. It can be therefore concluded, that chemical prestressing positively influences the bond behaviour of concrete with textile reinforcement and thus better utilisation of its properties can be provided.</p>


2022 ◽  
Vol 250 ◽  
pp. 113293
Author(s):  
Ioannis Boumakis ◽  
Krešimir Ninčević ◽  
Marco Marcon ◽  
Jan Vorel ◽  
Roman Wan-Wendner

2011 ◽  
Vol 462-463 ◽  
pp. 1164-1169
Author(s):  
Jing Xiang Yang ◽  
Ya Xin Zhang ◽  
Mamtimin Gheni ◽  
Ping Ping Chang ◽  
Kai Yin Chen ◽  
...  

In this paper, strength evaluations and reliability analysis are conducted for different types of PSSS(Periodically Symmetric Struts Supports) based on the FEA(Finite Element Analysis). The numerical models are established at first, and the PMA(Prestressed Modal Analysis) is conducted. The nodal stress value of all of the gauss points in elements are extracted out and the stress distributions are evaluated for each type of PSSS. Then using nonlinear least squares method, curve fitting is carried out, and the stress probability distribution function is obtained. The results show that although using different number of struts, the stress distribution function obeys the exponential distribution. By using nonlinear least squares method again for the distribution parameters a and b of different exponential functions, the relationship between number of struts and distribution function is obtained, and the mathematical models of the stress probability distribution functions for different supports are established. Finally, the new stress distribution model is introduced by considering the DSSI(Damaged Stress-Strength Interference), and the reliability evaluation for different types of periodically symmetric struts supports is carried out.


2019 ◽  
Vol 15 (2) ◽  
pp. 523-536
Author(s):  
Jinliang Liu ◽  
Yanmin Jia ◽  
Guanhua Zhang ◽  
Jiawei Wang

Purpose The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the bond-slip theory to calculate the crack width in PC beams. Design/methodology/approach Stress calculation method for common reinforcement after beam crack has occurred depends on the difference in the bonding performance between prestressed reinforcement and common reinforcement. A numerical calculation model for determining the crack width in PC beams is developed based on the bond-slip theory, and verified using experimental data. The calculation values obtained by the proposed numerical model and code formulas are compared, and the applicability of the numerical model is evaluated. Findings The theoretical analysis and experimental results verified that the crack width of PC members calculated based on the bond-slip theory in this study is reasonable. Furthermore, the stress calculation method for the common reinforcement is verified. Compared with the model calculation results obtained in this study, the results obtained from code formulas are more conservative. Originality/value The numerical calculation model for crack width proposed in this study can be used by engineers as a reference for calculating the crack width in PC beams to ensure the durability of the PC member.


2021 ◽  
Vol 331 ◽  
pp. 05012
Author(s):  
Patria Kusumaningrum ◽  
Gigih Muslim Prayogo ◽  
Sri Tudjono

A finite element study carried out using LS DYNA and aimed to simulate the monotonic pull-out test of deformed steel rebar embedded in concrete is presented in this paper. Three models of the interface between deformed steel rebar and well-confined concrete, i.e. perfect bond model and two bond-slip models are observed and compared. Bond stress-slip response and rebar stress-slip response obtained numerically are validated with experimental data and empirical equations available from the literature. The full bond model overestimates the response, providing higher rebar stress. In the bond-slip models, good agreement is observed between numerical and experimental bond stress and rebar Stress–slip responses. The empirical equation of bond-slip proposed by Murcia-Delso and Shing (2014) is found to overestimate the peak bond stress.


Sign in / Sign up

Export Citation Format

Share Document