Reliability-Based Design Provisions for Flexural Strength of Fiber-Reinforced Polymer Prestressed Concrete Bridge Girders

2019 ◽  
Vol 116 (1) ◽  
Author(s):  
Fei Peng ◽  
Weichen Xue
2021 ◽  
Author(s):  
Jon M. Pevey ◽  
William B. Rich ◽  
Christopher S. Williams ◽  
Robert J. Frosch

For bridges that are experiencing deterioration, action is needed to ensure the structural performance is adequate for the demands imposed. Innovate repair and strengthening techniques can provide a cost-effective means to extend the service lives of bridges efficiently and safely. The use of fiber reinforced polymer (FRP) systems for the repair and strengthening of concrete bridges is increasing in popularity. Recognizing the potential benefits of the widespread use of FRP, a research project was initiated to determine the most appropriate applications of FRP in Indiana and provide recommendations for the use of FRP in the state for the repair and strengthening of bridges. The details of the research are presented in two volumes. Volume 1 provides the details of a study conducted to (1) summarize the state-of-the-art methods for the application of FRP to concrete bridges, (2) identify successful examples of FRP implementation for concrete bridges in the literature and examine past applications of FRP in Indiana through case studies, and (3) better understand FRP usage and installation procedures in the Midwest and Indiana through industry surveys. Volume 2 presents two experimental programs that were conducted to develop and evaluate various repair and strengthening methodologies used to restore the performance of deteriorated concrete bridge beams. The first program investigated FRP flexural strengthening methods, with a focus on adjacent box beam bridges. The second experimental program examined potential techniques for repairing deteriorated end regions of prestressed concrete bridge girders. Externally bonded FRP and near-surface-mounted (NSM) FRP were considered in both programs.


2021 ◽  
Vol 6 (1) ◽  
pp. 55-57
Author(s):  
Herish A. Hussein ◽  
Zia Razzaq

The effect of Carbon Fiber Reinforced Polymer (CFRP) retrofitting and concrete type on the flexural strength of prestressed concrete I-section girders used in bridges and beams in buildings is investigated. Non-linear moment-curvature relationships are predicted using an iterative algorithm for both non-retrofitted and CFRP-retrofitted prestressed concrete girder and beam cross-sections with various concrete types. Two different CFRP-retrofitting schemes are analyzed for comparing their effectiveness. It is found that although non-retrofitted beam section exhibits greater ductility, the use of CFRP retrofitting in both tension and compression regions simultaneously results in a significant increase in flexural strength. It is also found that the higher the ultimate concrete strength, the higher is the influence of CFRP-retrofitting on increasing flexural strength.


Sign in / Sign up

Export Citation Format

Share Document