Knowledge Transfer Model In The Textile Industry to Enhance Lifelong Learning

2020 ◽  
Vol 13 (2) ◽  
Author(s):  
Nissorn Bumpen
2019 ◽  
Vol 6 (1) ◽  
pp. 40-49
Author(s):  
Teresa Paiva

Background: The theoretical background of this article is on the model developed of knowledge transfer between universities and the industry in order to access the best practices and adapt to the study case in question regarding the model of promoting and manage innovation within the universities that best contribute with solution and projects to the business field. Objective: The development of a knowledge transfer model is the main goal of this article, supported in the best practices known and, also, to reflect in the main measurement definitions to evaluate the High Education Institution performance in this area. Methods: The method for this article development is the case study method because it allows the fully understanding of the dynamics present within a single setting, and the subject examined to comprehend what is being done and what the dynamics mean. The case study does not have a data collection method, as it is a research that may rely on multiple sources of evidence and data which should be converged. Results: Since it’s a case study this article present a fully description of the model proposed and implemented for the knowledge transfer process of the institution. Conclusion: Still in a discussion phase, this article presents as conclusions some questions and difficulties that could be pointed out, as well as some good perspectives of performed activity developed.


2011 ◽  
Vol 312-315 ◽  
pp. 854-859
Author(s):  
Ugur Akyol ◽  
Kamil Kahveci ◽  
Ahmet Cihan ◽  
Dinçer Akal

In this study, the drying process of cotton bobbins for different drying air temperatures has been simulated by a simultaneous heat and mass transfer model. In the model, the mass transfer is assumed to be controlled by diffusion. In order to make the simulation, firstly, drying behavior of cotton bobbins for different drying air temperatures has been determined on an experimental bobbin dryer setup which was designed and manufactured based on hot-air bobbin dryers used in textile industry. In the experimental setup, temperatures of different points in cotton bobbins were measured by thermocouples placed inside the bobbins, and weights of the bobbins during the drying period were determined by means of a load cell. Then, moisture ratio and temperature values of the model have been fitted to the experimental ones. The fit was performed by selecting the values for the diffusion coefficient and the thermal diffusivity in the model in such a way that these values make the sum of the squared differences between the experimental and the model results for moisture ratio and temperature minimum. Results show that there is a good agreement between the model results and the experimental measurements. The results also show that temperature has a significant effect on mass transfer and the temperature dependence of the diffusion coefficient may be expressed by an Arrhenius type relation.


Sign in / Sign up

Export Citation Format

Share Document