scholarly journals A New Diversity Technique for Imbalance Learning Ensembles

2018 ◽  
Vol 7 (2.14) ◽  
pp. 478 ◽  
Author(s):  
Hartono . ◽  
Opim Salim Sitompul ◽  
Erna Budhiarti Nababan ◽  
Tulus . ◽  
Dahlan Abdullah ◽  
...  

Data mining and machine learning techniques designed to solve classification problems require balanced class distribution. However, in reality sometimes the classification of datasets indicates the existence of a class represented by a large number of instances whereas there are classes with far fewer instances. This problem is known as the class imbalance problem. Classifier Ensembles is a method often used in overcoming class imbalance problems. Data Diversity is one of the cornerstones of ensembles. An ideal ensemble system should have accurrate individual classifiers and if there is an error it is expected to occur on different objects or instances. This research will present the results of overview and experimental study using Hybrid Approach Redefinition (HAR) Method in handling class imbalance and at the same time expected to get better data diversity. This research will be conducted using 6 datasets with different imbalanced ratios and will be compared with SMOTEBoost which is one of the Re-Weighting method which is often used in handling class imbalance. This study shows that the data diversity is related to performance in the imbalance learning ensembles and the proposed methods can obtain better data diversity.  

Author(s):  
Hartono Hartono ◽  
Erianto Ongko

Class imbalance is one of the main problems in classification because the number of samples in majority class is far more than the number of samples in minority class.  The class imbalance problem in the multi-class dataset is much more difficult to handle than the problem in the two class dataset. This multi-class imbalance problem is even more complicated if it is accompanied by overlapping. One method that has proven reliable in dealing with this problem is the Hybrid Approach Redefinition-Multiclass Imbalance (HAR-MI) method which is classified as a hybrid approach which combines sampling and classifier ensembles. However, in terms of diversity among classifiers, hybrid approach that combine sampling and classifier ensembles will give better results. HAR-MI delivers excellent results in handling multi-class imbalances. The HAR-MI method uses SMOTE to increase the number of sample in minority class. However, this SMOTE also has a weakness where if there is an extremely imbalanced dataset and a large number of attributes there will be over-fitting. To overcome the problem of over-fitting, the Hybrid Sampling method was proposed. HAR-MI combination with Hybrid Sampling is done to increase the number of samples in the minority class and at the same time reduce the number of noise samples in the majority class. The preprocessing stages at HAR-MI will use the Minimizing Overlapping Selection under Hybrid Sazmpling (MOSHS) method and the processing stages will use Different Contribution Sampling. The results obtained will be compared with the results using Neighbourhood-based undersampling. Overlapping and Classifier Performance will be measured using Augmented R-Value, the Matthews Correlation Coefficient (MCC), Precision, Recall, and F-Value. The results showed that HAR-MI with Hybrid Sampling gave better results in terms of Augmented R-Value, Precision, Recall, and F-Value.


2020 ◽  
Vol 10 (4) ◽  
pp. 1276 ◽  
Author(s):  
Eréndira Rendón ◽  
Roberto Alejo ◽  
Carlos Castorena ◽  
Frank J. Isidro-Ortega ◽  
Everardo E. Granda-Gutiérrez

The class imbalance problem has been a hot topic in the machine learning community in recent years. Nowadays, in the time of big data and deep learning, this problem remains in force. Much work has been performed to deal to the class imbalance problem, the random sampling methods (over and under sampling) being the most widely employed approaches. Moreover, sophisticated sampling methods have been developed, including the Synthetic Minority Over-sampling Technique (SMOTE), and also they have been combined with cleaning techniques such as Editing Nearest Neighbor or Tomek’s Links (SMOTE+ENN and SMOTE+TL, respectively). In the big data context, it is noticeable that the class imbalance problem has been addressed by adaptation of traditional techniques, relatively ignoring intelligent approaches. Thus, the capabilities and possibilities of heuristic sampling methods on deep learning neural networks in big data domain are analyzed in this work, and the cleaning strategies are particularly analyzed. This study is developed on big data, multi-class imbalanced datasets obtained from hyper-spectral remote sensing images. The effectiveness of a hybrid approach on these datasets is analyzed, in which the dataset is cleaned by SMOTE followed by the training of an Artificial Neural Network (ANN) with those data, while the neural network output noise is processed with ENN to eliminate output noise; after that, the ANN is trained again with the resultant dataset. Obtained results suggest that best classification outcome is achieved when the cleaning strategies are applied on an ANN output instead of input feature space only. Consequently, the need to consider the classifier’s nature when the classical class imbalance approaches are adapted in deep learning and big data scenarios is clear.


2021 ◽  
Vol 7 ◽  
pp. e671
Author(s):  
Shilpi Bose ◽  
Chandra Das ◽  
Abhik Banerjee ◽  
Kuntal Ghosh ◽  
Matangini Chattopadhyay ◽  
...  

Background Machine learning is one kind of machine intelligence technique that learns from data and detects inherent patterns from large, complex datasets. Due to this capability, machine learning techniques are widely used in medical applications, especially where large-scale genomic and proteomic data are used. Cancer classification based on bio-molecular profiling data is a very important topic for medical applications since it improves the diagnostic accuracy of cancer and enables a successful culmination of cancer treatments. Hence, machine learning techniques are widely used in cancer detection and prognosis. Methods In this article, a new ensemble machine learning classification model named Multiple Filtering and Supervised Attribute Clustering algorithm based Ensemble Classification model (MFSAC-EC) is proposed which can handle class imbalance problem and high dimensionality of microarray datasets. This model first generates a number of bootstrapped datasets from the original training data where the oversampling procedure is applied to handle the class imbalance problem. The proposed MFSAC method is then applied to each of these bootstrapped datasets to generate sub-datasets, each of which contains a subset of the most relevant/informative attributes of the original dataset. The MFSAC method is a feature selection technique combining multiple filters with a new supervised attribute clustering algorithm. Then for every sub-dataset, a base classifier is constructed separately, and finally, the predictive accuracy of these base classifiers is combined using the majority voting technique forming the MFSAC-based ensemble classifier. Also, a number of most informative attributes are selected as important features based on their frequency of occurrence in these sub-datasets. Results To assess the performance of the proposed MFSAC-EC model, it is applied on different high-dimensional microarray gene expression datasets for cancer sample classification. The proposed model is compared with well-known existing models to establish its effectiveness with respect to other models. From the experimental results, it has been found that the generalization performance/testing accuracy of the proposed classifier is significantly better compared to other well-known existing models. Apart from that, it has been also found that the proposed model can identify many important attributes/biomarker genes.


Author(s):  
Hartono Hartono ◽  
Erianto Ongko ◽  
Yeni Risyani

<span>In the classification process that contains class imbalance problems. In addition to the uneven distribution of instances which causes poor performance, overlapping problems also cause performance degradation. This paper proposes a method that combining feature selection and hybrid approach redefinition (HAR) method in handling class imbalance and overlapping for multi-class imbalanced. HAR was a hybrid ensembles method in handling class imbalance problem. The main contribution of this work is to produce a new method that can overcome the problem of class imbalance and overlapping in the multi-class imbalance problem.  This method must be able to give better results in terms of classifier performance and overlap degrees in multi-class problems. This is achieved by improving an ensemble learning algorithm and a preprocessing technique in HAR <span>using minimizing overlapping selection under SMOTE (MOSS). MOSS was known as a very popular feature selection method in handling overlapping. To validate the accuracy of the proposed method, this research use augmented R-Value, Mean AUC, Mean F-Measure, Mean G-Mean, and Mean Precision. The performance of the model is evaluated against the hybrid method (MBP+CGE) as a popular method in handling class imbalance and overlapping for multi-class imbalanced. It is found that the proposed method is superior when subjected to classifier performance as indicate with better Mean AUC, F-Measure, G-Mean, and precision.</span></span>


Author(s):  
Naveed Ahmad Khan Jhamat ◽  
Ghulam Mustafa ◽  
Zhendong Niu

Class imbalance problem is being manifoldly confronted by researchers due to the increasing amount of complicated data. Common classification algorithms are impoverished to perform effectively on imbalanced datasets. Larger class cases typically outbalance smaller class cases in class imbalance learning. Common classification algorithms raise larger class performance owing to class imbalance in data and overall improvement in accuracy as their goal while lowering performance on smaller class. Furthermore, these algorithms deal false positive and false negative in an even way and regard equal cost of misclassifying cases. Meanwhile, different ensemble solutions have been proposed over the years for class imbalance learning but these approaches hamper the performance of larger class as emphasizing on the small class cases. The intuition of this overall degraded outcome would be the low diversity in ensemble solutions and overfitting or underfitting in data resampling techniques. To overcome these problems, we suggest a hybrid ensemble method by leveraging MultiBoost ensemble and Synthetic Minority Over-sampling TEchnique (SMOTE). Our suggested solution leverage the effectiveness of its elements. Therefore, it improves the outcome of the smaller class by reinforcing its space and limiting error in prediction. The proposed method shows improved performance as compare to numerous other algorithms and techniques in experiments.  


Sign in / Sign up

Export Citation Format

Share Document