scholarly journals IOT based modeling of closed transition transfer switch in IEC 61850

2018 ◽  
Vol 7 (2.12) ◽  
pp. 329
Author(s):  
Hyun Sung Lim ◽  
In Ho Ryu ◽  
Jun Ho Bang

Background/Objectives: The power demand of utility electrical power has stimulated the use of distributed energy for peak shaving. Distributed energy resources need to be monitored and controlled like Internet of Things.Methods/Statistical analysis: Distributed Energy Resources (DERs) are small scale electric energy system like Micro Turbine, Photovoltaic, Wind power, Small Generator and widely spread in Korea. For utilizing electrical device with Internet of Things, we need integrated system and adapt International Electrical Code like IEC 61850.Findings: To connect DERs with uninterrupted grid system, it required Closed Transition Transfer Switch (CTTS). Existing International Electrical Code presented some distributed energy resource by IEC 61850-7-420. However, the switch like CTTS is not presented. So, we described modeling of CTTS in IEC 61850 and verified monitoring data with TCP/IP.Improvements/Applications: The proposed modeling of CTTS not only combines the DERs with grid system but also conjugates smart grid system with IOT Technology. 

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1803
Author(s):  
Nasser Hosseinzadeh ◽  
Ahmed Al Maashri ◽  
Naser Tarhuni ◽  
Abdelsalam Elhaffar ◽  
Amer Al-Hinai

This article presents the development of a platform for real-time monitoring of multi-microgrids. A small-scale platform has been developed and implemented as a prototype, which takes data from various types of devices located at a distance from each other. The monitoring platform is interoperable, as it allows several protocols to coexist. While the developed prototype is tested on small-scale distributed energy resources (DERs), it is done in a way to extend the concept for monitoring several microgrids in real scales. Monitoring strategies were developed for DERs by making a customized two-way communication channel between the microgrids and the monitoring center using a long-range bridged wireless local area network (WLAN). In addition, an informative and easy-to-use software dashboard was developed. The dashboard shows real-time information and measurements from the DERs—providing the user with a holistic view of the status of the DERs. The proposed system is scalable, modular, facilitates the interoperability of various types of inverters, and communicates data over a secure communication channel. All these features along with its relatively low cost make the developed real-time monitoring platform very useful for online monitoring of smart microgrids.


2021 ◽  
Author(s):  
Gregory Kaminski ◽  
Philip Odonkor

Abstract The decreasing cost of implementation and increasing regulatory incentive to lower energy use have led to an increased adoption of distributed energy resources in recent years. This increased adoption has been further fueled by a surge in energy consciousness and the expansion of energy-saving products and technologies. To lower reliance on the electrical grid and fully realize the benefits of distributed energy resources, many consumers have also elected to use battery systems to store generated energy. For owners of multiple buildings, or multiple owners willing to share the operational cost, building clusters may be formed to more effectively take advantage of these distributed resources and storage systems. The implementation of these systems in existing buildings introduces the question of what makes a “good” building cluster. Furthermore, the scalable nature of distributed energy sources and storage systems create countless possibilities for system configuration. Through comparison of unique two-building clusters from a stock of five buildings with a given distributed energy resource (in this case, a solar photovoltaic panel array) and energy storage system, we develop a fundamental understanding of the underlying factors that allow building clusters to be less reliant on the utility grid and make better use of energy generation and storage systems.


2018 ◽  
Vol 8 (8) ◽  
pp. 1283 ◽  
Author(s):  
Pedro Faria ◽  
João Spínola ◽  
Zita Vale

Distributed energy resource integration in power systems has advantages and challenges in both the economic and the technical operation of the system. An aggregator, as in the case of a Virtual Power Player, is essential in order to support the operation of these small size resources. Innovative approaches capable of supporting the decisions made in terms of resource scheduling, aggregation and remuneration are needed. The present paper addresses a methodology capable of managing resources through the activities of an aggregator, providing different choices of aggregation and remuneration strategies. The methodology is validated in a case study regarding a 21-bus network, composed of 20 consumers and 26 producers.


Author(s):  
Samantha Janko ◽  
Nathan G. Johnson

Electricity has traditionally been a commodity that is bought and sold through a rigid marketplace between an electric utility and a ratepayer. Today, however, the electricity market is rapidly evolving to be comprised of distributed energy resources and microgrids that change the structure of the technical and financial relationship between utilities and ratepayers. Regulation, a reduction in cost of renewable energy technologies, interoperability and improved communications, and public interest in green power are facilitating this transition. Microgrids require an additional layer of control, often use preprogrammed rule sets, and lack bi-directional self-awareness, self-management, and self-diagnostics necessary to dynamically adapt to changes on-site and in the grid. Research is needed in optimization and controls. This study explores the viability of self-organizing control algorithms to manage multiple distributed energy resources within a distribution network and reduce electricity cost to one or more ratepayers having such resources installed on-site. Such research provides insight into the transition from a traditional power distribution architecture into a flexible smart network that is better prepared for future technological advances, renewables integration, and customer-side control. Agent-based techniques are employed for least-cost optimization and implements these to manage transactions between three decentralized distributed energy resource systems within an electrical network.


Author(s):  
Claudia Zanabria ◽  
Filip Andren ◽  
Fabian Leimgruber ◽  
Roland Brundlinger ◽  
Thomas Strasser

Sign in / Sign up

Export Citation Format

Share Document