scholarly journals Mining of high dimensional data using enhanced clustering approach

2018 ◽  
Vol 7 (2.21) ◽  
pp. 291
Author(s):  
S Sivakumar ◽  
Kumar Narayanan ◽  
Swaraj Paul Chinnaraju ◽  
Senthil Kumar Janahan

Extraction of useful data from a set is known as Data mining. Clustering has top information mining process it supposed to help an individual, divide and recognize numerous data from records inside group consistent with positive similarity measure. Clustering excessive dimensional data has been a chief undertaking. Maximum present clustering algorithms have been inefficient if desired similarity is computed among statistics factors inside the complete dimensional space. Varieties of projected clustering algorithms were counseled for addressing those problems. However many of them face problems whilst clusters conceal in some space with low dimensionality. These worrying situations inspire our system to endorse a look at partitional distance primarily based projected clustering set of rules. The aimed paintings is successfully deliberate for projects clusters in excessive huge dimension space via adapting the stepped forward method in k Mediods set of pointers. The main goal for second one gadget is to take away outliers, at the same time as the 1/3 method will find clusters in numerous spaces. The (clustering) technique is based on the adequate Mediods set of guidelines, an excess distance managed to set of attributes everywhere values are dense.

Author(s):  
Ping Deng ◽  
Qingkai Ma ◽  
Weili Wu

Clustering can be considered as the most important unsupervised learning problem. It has been discussed thoroughly by both statistics and database communities due to its numerous applications in problems such as classification, machine learning, and data mining. A summary of clustering techniques can be found in (Berkhin, 2002). Most known clustering algorithms such as DBSCAN (Easter, Kriegel, Sander, & Xu, 1996) and CURE (Guha, Rastogi, & Shim, 1998) cluster data points based on full dimensions. When the dimensional space grows higher, the above algorithms lose their efficiency and accuracy because of the so-called “curse of dimensionality”. It is shown in (Beyer, Goldstein, Ramakrishnan, & Shaft, 1999) that computing the distance based on full dimensions is not meaningful in high dimensional space since the distance of a point to its nearest neighbor approaches the distance to its farthest neighbor as dimensionality increases. Actually, natural clusters might exist in subspaces. Data points in different clusters may be correlated with respect to different subsets of dimensions. In order to solve this problem, feature selection (Kohavi & Sommerfield, 1995) and dimension reduction (Raymer, Punch, Goodman, Kuhn, & Jain, 2000) have been proposed to find the closely correlated dimensions for all the data and the clusters in such dimensions. Although both methods reduce the dimensionality of the space before clustering, the case where clusters may exist in different subspaces of full dimensions is not handled well. Projected clustering has been proposed recently to effectively deal with high dimensionalities. Finding clusters and their relevant dimensions are the objectives of projected clustering algorithms. Instead of projecting the entire dataset on the same subspace, projected clustering focuses on finding specific projection for each cluster such that the similarity is reserved as much as possible.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Lopamudra Dey ◽  
Sanjay Chakraborty

“Clustering” the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms.


Author(s):  
Parul Agarwal ◽  
Shikha Mehta

Subspace clustering approaches cluster high dimensional data in different subspaces. It means grouping the data with different relevant subsets of dimensions. This technique has become very effective as a distance measure becomes ineffective in a high dimensional space. This chapter presents a novel evolutionary approach to a bottom up subspace clustering SUBSPACE_DE which is scalable to high dimensional data. SUBSPACE_DE uses a self-adaptive DBSCAN algorithm to perform clustering in data instances of each attribute and maximal subspaces. Self-adaptive DBSCAN clustering algorithms accept input from differential evolution algorithms. The proposed SUBSPACE_DE algorithm is tested on 14 datasets, both real and synthetic. It is compared with 11 existing subspace clustering algorithms. Evaluation metrics such as F1_Measure and accuracy are used. Performance analysis of the proposed algorithms is considerably better on a success rate ratio ranking in both accuracy and F1_Measure. SUBSPACE_DE also has potential scalability on high dimensional datasets.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1132
Author(s):  
Deting Kong ◽  
Yuan Wang ◽  
Xinyan Wu ◽  
Xiyu Liu ◽  
Jianhua Qu ◽  
...  

In this paper, we propose a novel clustering approach based on P systems and grid- density strategy. We present grid-density based approach for clustering high dimensional data, which first projects the data patterns on a two-dimensional space to overcome the curse of dimensionality problem. Then, through meshing the plane with grid lines and deleting sparse grids, clusters are found out. In particular, we present weighted spiking neural P systems with anti-spikes and astrocyte (WSNPA2 in short) to implement grid-density based approach in parallel. Each neuron in weighted SN P system contains a spike, which can be expressed by a computable real number. Spikes and anti-spikes are inspired by neurons communicating through excitatory and inhibitory impulses. Astrocytes have excitatory and inhibitory influence on synapses. Experimental results on multiple real-world datasets demonstrate the effectiveness and efficiency of our approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Fuding Xie ◽  
Yutao Fan ◽  
Ming Zhou

Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of reduced dimensionality. This paper introduces a dimensionality reduction technique by weighted connections between neighborhoods to improveK-Isomap method, attempting to preserve perfectly the relationships between neighborhoods in the process of dimensionality reduction. The validity of the proposal is tested by three typical examples which are widely employed in the algorithms based on manifold. The experimental results show that the local topology nature of dataset is preserved well while transforming dataset in high-dimensional space into a new dataset in low-dimensionality by the proposed method.


2010 ◽  
Vol 6 (4) ◽  
pp. 16-32 ◽  
Author(s):  
Pradeep Kumar ◽  
Bapi S. Raju ◽  
P. Radha Krishna

In many data mining applications, both classification and clustering algorithms require a distance/similarity measure. The central problem in similarity based clustering/classification comprising sequential data is deciding an appropriate similarity metric. The existing metrics like Euclidean, Jaccard, Cosine, and so forth do not exploit the sequential nature of data explicitly. In this paper, the authors propose a similarity preserving function called Sequence and Set Similarity Measure (S3M) that captures both the order of occurrence of items in sequences and the constituent items of sequences. The authors demonstrate the usefulness of the proposed measure for classification and clustering tasks. Experiments were conducted on benchmark datasets, that is, DARPA’98 and msnbc, for classification task in intrusion detection and clustering task in web mining domains. Results show the usefulness of the proposed measure.


2012 ◽  
Vol 532-533 ◽  
pp. 959-963
Author(s):  
Xiang Qin Xiang ◽  
Deng Sheng Liu

As a branch of Data-Mining, outlier mining is a promising prospect, and clustering analyse is a kind of technology in spatial outlier mining. The paper analyse the clustering arithmetic , compare some arithmetic of Clustring, and discuss the strongpoint and shortpoint of them.The paper research the spatial data and Outlier attributes in high dimensional space. And analysing the CLIQUE algorithm to detect the Outlier in high dimensional space, this approach can find the outliers in high-dimensional space effectively. In conclusion, the main trends of spatial outlier mining are forecaste.


Author(s):  
B.Hari Babu ◽  
N.Subash Chandra ◽  
T. Venu Gopal

Clustering is the most prominent data mining technique used for grouping the data into clusters based on distance measures. With the advent growth of high dimensional data such as microarray gene expression data, and grouping high dimensional data into clusters will encounter the similarity between the objects in the full dimensional space is often invalid because it contains different types of data. The process of grouping into high dimensional data into clusters is not accurate and perhaps not up to the level of expectation when the dimension of the dataset is high. It is now focusing tremendous attention towards research and development. The performance issues of the data clustering in high dimensional data it is necessary to study issues like dimensionality reduction, redundancy elimination, subspace clustering, co-clustering and data labeling for clusters are to analyzed and improved. In this paper, we presented a brief comparison of the existing algorithms that were mainly focusing at clustering on high dimensional data.


2018 ◽  
Vol 14 (3) ◽  
pp. 38-55 ◽  
Author(s):  
Kavan Fatehi ◽  
Mohsen Rezvani ◽  
Mansoor Fateh ◽  
Mohammad-Reza Pajoohan

This article describes how recently, because of the curse of dimensionality in high dimensional data, a significant amount of research has been conducted on subspace clustering aiming at discovering clusters embedded in any possible attributes combination. The main goal of subspace clustering algorithms is to find all clusters in all subspaces. Previous studies have mostly been generating redundant subspace clusters, leading to clustering accuracy loss and also increasing the running time of the algorithms. A bottom-up density-based approach is suggested in this article, in which the cluster structure serves as a similarity measure to generate the optimal subspaces which result in raising the accuracy of the subspace clustering. Based on this idea, the algorithm discovers similar subspaces by considering similarity in their cluster structure, then combines them and the data in the new subspaces would be clustered again. Finally, the algorithm determines all the subspaces and also finds all clusters within them. Experiments on various synthetic and real datasets show that the results of the proposed approach are significantly better in quality and runtime than the state-of-the-art on clustering high-dimensional data.


Sign in / Sign up

Export Citation Format

Share Document