scholarly journals Analysis of Hexagonal Photonic Crystal Fiber Using the Golden Ratio

2018 ◽  
Vol 7 (3.13) ◽  
pp. 5
Author(s):  
Atta Rahman ◽  
Emeroylariffion RAbas ◽  
Feroza Begum

In this research, the proposed hexagonal photonic crystal fibers design is modelled using the principle of golden ratio; fixing the proportion of pitch to diameter of the air holes constant. Finite element method with perfectly matched layer boundary is used for numerical simulation of different properties. It is shown that the proposed design has lower effective area of below 9 μm2, low chromatic dispersion value of below 57 ps/(km.nm) and confinement loss of less than 0.01 dB/km at 1.55 μm wavelength. The proposed hexagonal photonic crystal fiber is applicable for data transmission systems.  

Photonics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 16
Author(s):  
Abdul Mu’iz Maidi ◽  
Izaddeen Yakasai ◽  
Pg Emeroylariffion Abas ◽  
Malik Muhammad Nauman ◽  
Rosyzie Anna Apong ◽  
...  

A simple hexagonal lattice photonic crystal fiber model with liquid-infiltrated core for different liquids: water, ethanol and benzene, has been proposed. In the proposed structure, three air hole rings are present in the cladding and three equal sized air holes are present in the core. Numerical investigation of the proposed fiber has been performed using full vector finite element method with anisotropic perfectly match layers, to show that the proposed simple structure exhibits high relative sensitivity, high power fraction, relatively high birefringence, low chromatic dispersion, low confinement loss, small effective area, and high nonlinear coefficient. All these properties have been numerically investigated at a wider wavelength regime 0.6–1.8 μm within mostly the IR region. Relative sensitivities of water, ethanol and benzene are obtained at 62.60%, 65.34% and 74.50%, respectively, and the nonlinear coefficients are 69.4 W−1 km−1 for water, 73.8 W−1 km−1 for ethanol and 95.4 W−1 km−1 for benzene, at 1.3 µm operating wavelength. The simple structure can be easily fabricated for practical use, and assessment of its multiple waveguide properties has justified its usage in real liquid detection.


2021 ◽  
Vol 6 (2) ◽  
pp. 98-105
Author(s):  
Paul Antwi ◽  
Patrick Atsu Agbemabiese ◽  
Jay Denton Agamah ◽  
Jacob Ayehquaye Nartey ◽  
Moses K. Torkudzor

Photonic crystal fibers are being designed with promising results owing to design flexibility and structure geometry. A four-ring structure with ring defects has been proposed. The results show that Photonic crystal fiber with the third ring removed has very low confinement loss of 1.17x10-4dB/km at 1.55µm, chromatic dispersion of - 69ps/km.nm at 0.75µm and zero chromatic dispersion at 0.86µm. The results also show that removing only the third ring reduces chromatic dispersion at shorter wavelengths than at longer wavelengths. Vectorial Finite element method is used for this work. The proposed fiber can be used for short and medium transmission applications.   Citation: Agbemabiese, P. A., Agamah, J. D., Nartey, J. A. and Torkudzor, M. K. (2021). Defect-Photonic Crystal Fiber structure of Zero Chromatic Dispersion very low Confinement loss. International Journal of Technology and Management Research (IJTMR), Vol. 6 (2): Pp.96-105. Received: March 20, 2021Accepted: September 1, 2021


Author(s):  
Hieu

In this paper, we report a numerical calculation of the influence of structural parameters on the supercontinuum generation of photonic crystal fibers. A photonic crystal fiber based on the fused silica glass, eight rings of air holes ordered in a hexagonal lattice, is proposed. Guiding properties in terms of dispersion and confinement loss of the fundamental mode are also studied numerically. As a result, the broadband width of the supercontinuum spectrum will increase when the lattice pitch decreases or the diameter of air hole in the cladding increases. However, the coherence of SC will become worse.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 249
Author(s):  
Abdul Mu’iz Maidi ◽  
Pg Emeroylarffion Abas ◽  
Pg Iskandar Petra ◽  
Shubi Kaijage ◽  
Nianyu Zou ◽  
...  

A novel liquid-infiltrated photonic crystal fiber model applicable in liquid sensing for different test liquids—water, ethanol and benzene—has been proposed. One core hole and three air hole rings have been designed and a full vector finite element method has been used for numerical investigation to give the best results in terms of relative sensitivity, confinement loss, power fraction, dispersion, effective area, nonlinear coefficient, numerical aperture and V-Parameter. Specially, the assessed relative sensitivities of the proposed fiber with water, ethanol and benzene are 94.26%, 95.82% and 99.58%, respectively, and low confinement losses of 1.52 × 10−11 dB/m with water, 1.21 × 10−12 dB/m with ethanol and 6.01 × 10−16 dB/m with benzene, at 1.0 μm operating wavelength. This novel PCF design is considered simple and can be easily fabricated for practical use, and the assessed waveguide properties has determined the potential applicability in real liquid sensing applications.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
A. Abbaszadeh ◽  
S. Makouei ◽  
S. Meshgini

A new triangular photonic crystal fiber with a based microstructure core gas sensor has been proposed for the wavelength range from 1.1μm to 1.7μm. The guiding trait of the proposed structure depends on geometric parameters and wavelength, which are numerically studied by the finite element method. According to the results, the relative sensitivity obtained as high as 75.14% at 1.33μm wavelength. high birefringence and effective area are also obtained by order of 3.75×10-3 and 14.07 μm2 finally, low confinement loss of 1.41×10-2 dB/m is acquired at the same wavelength. The variation of the diameters in the cladding and core region is investigated and the results show that this structure has good stability for manufacturing goals. Since the results show the highest sensitivity at wavelengths around 1.2μm to 1.7μm, which is the absorption line of many gases such as methane (CH4), hydrogen fluoride (HF), ammonia (NH3), this gas sensor can be used for medical and industrial applications.


2020 ◽  
Vol 30 (4) ◽  
pp. 331
Author(s):  
Vu Tran Quoc ◽  
Trang Chu Thi Gia ◽  
Minh Le Van ◽  
Thuy Nguyen Thi ◽  
Phuong Nguyen Thi Hong ◽  
...  

In this paper, a photonic crystal fiber (PCF) with core infiltrated with Nitrobenzene is proposed and investigated. Its feature properties as the effective refractive index, effective mode area, chromatic dispersion, and confinement loss have been numerically simulated. The obtained results show that characteristic quantities of PCF with core infiltrated with Nitrobenzene (PCF-N) having some advantages in comparison to PCF with core infiltrated with Toluene (PCF-T) at 1.55μm wavelength. For the purpose of supercontinuum generation, two optimal structures with lattice constants 2.0μm and 2.5μm with filling factors d/Ʌ = 0.3 are identified.


Sign in / Sign up

Export Citation Format

Share Document