Design of photonic crystal fiber with negative chromatic dispersion and low confinement loss

Author(s):  
Ankita Kumari ◽  
Pawan Kumar Inaniya
2020 ◽  
Vol 30 (4) ◽  
pp. 331
Author(s):  
Vu Tran Quoc ◽  
Trang Chu Thi Gia ◽  
Minh Le Van ◽  
Thuy Nguyen Thi ◽  
Phuong Nguyen Thi Hong ◽  
...  

In this paper, a photonic crystal fiber (PCF) with core infiltrated with Nitrobenzene is proposed and investigated. Its feature properties as the effective refractive index, effective mode area, chromatic dispersion, and confinement loss have been numerically simulated. The obtained results show that characteristic quantities of PCF with core infiltrated with Nitrobenzene (PCF-N) having some advantages in comparison to PCF with core infiltrated with Toluene (PCF-T) at 1.55μm wavelength. For the purpose of supercontinuum generation, two optimal structures with lattice constants 2.0μm and 2.5μm with filling factors d/Ʌ = 0.3 are identified.


Photonics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 16
Author(s):  
Abdul Mu’iz Maidi ◽  
Izaddeen Yakasai ◽  
Pg Emeroylariffion Abas ◽  
Malik Muhammad Nauman ◽  
Rosyzie Anna Apong ◽  
...  

A simple hexagonal lattice photonic crystal fiber model with liquid-infiltrated core for different liquids: water, ethanol and benzene, has been proposed. In the proposed structure, three air hole rings are present in the cladding and three equal sized air holes are present in the core. Numerical investigation of the proposed fiber has been performed using full vector finite element method with anisotropic perfectly match layers, to show that the proposed simple structure exhibits high relative sensitivity, high power fraction, relatively high birefringence, low chromatic dispersion, low confinement loss, small effective area, and high nonlinear coefficient. All these properties have been numerically investigated at a wider wavelength regime 0.6–1.8 μm within mostly the IR region. Relative sensitivities of water, ethanol and benzene are obtained at 62.60%, 65.34% and 74.50%, respectively, and the nonlinear coefficients are 69.4 W−1 km−1 for water, 73.8 W−1 km−1 for ethanol and 95.4 W−1 km−1 for benzene, at 1.3 µm operating wavelength. The simple structure can be easily fabricated for practical use, and assessment of its multiple waveguide properties has justified its usage in real liquid detection.


2015 ◽  
Vol 24 (04) ◽  
pp. 1550051 ◽  
Author(s):  
S. Geerthana ◽  
A. Sivanantha Raja ◽  
D. Shanmuga Sundar

A highly birefringent photonic crystal fiber (PCF) with large nonlinearity, low dispersion and low confinement loss is designed by introducing a solid elliptical core structure with spiral lattice of circular air holes as a cladding. The dependence of different geometrical parameters, such as pitch size, diameter of air holes and arrangement of air holes are investigated. By optimizing the available parameters, the designed elliptical–spiral PCF offers high birefringence up to 0.005264, high nonlinearity up to 8683.59[Formula: see text]W[Formula: see text][Formula: see text]km[Formula: see text], low chromatic dispersion of [Formula: see text][Formula: see text]ps/nm/km, and low confinement loss of 0.00305[Formula: see text]dB/km within a wide wavelength range of 1000–2000[Formula: see text]nm.


2018 ◽  
Vol 7 (3.13) ◽  
pp. 5
Author(s):  
Atta Rahman ◽  
Emeroylariffion RAbas ◽  
Feroza Begum

In this research, the proposed hexagonal photonic crystal fibers design is modelled using the principle of golden ratio; fixing the proportion of pitch to diameter of the air holes constant. Finite element method with perfectly matched layer boundary is used for numerical simulation of different properties. It is shown that the proposed design has lower effective area of below 9 μm2, low chromatic dispersion value of below 57 ps/(km.nm) and confinement loss of less than 0.01 dB/km at 1.55 μm wavelength. The proposed hexagonal photonic crystal fiber is applicable for data transmission systems.  


2021 ◽  
Vol 6 (2) ◽  
pp. 98-105
Author(s):  
Paul Antwi ◽  
Patrick Atsu Agbemabiese ◽  
Jay Denton Agamah ◽  
Jacob Ayehquaye Nartey ◽  
Moses K. Torkudzor

Photonic crystal fibers are being designed with promising results owing to design flexibility and structure geometry. A four-ring structure with ring defects has been proposed. The results show that Photonic crystal fiber with the third ring removed has very low confinement loss of 1.17x10-4dB/km at 1.55µm, chromatic dispersion of - 69ps/km.nm at 0.75µm and zero chromatic dispersion at 0.86µm. The results also show that removing only the third ring reduces chromatic dispersion at shorter wavelengths than at longer wavelengths. Vectorial Finite element method is used for this work. The proposed fiber can be used for short and medium transmission applications.   Citation: Agbemabiese, P. A., Agamah, J. D., Nartey, J. A. and Torkudzor, M. K. (2021). Defect-Photonic Crystal Fiber structure of Zero Chromatic Dispersion very low Confinement loss. International Journal of Technology and Management Research (IJTMR), Vol. 6 (2): Pp.96-105. Received: March 20, 2021Accepted: September 1, 2021


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 122
Author(s):  
Fahad Ahmed Al-Zahrani ◽  
Md. Anowar Kabir

The orbital angular momentum (OAM) of light is used for increasing the optical communication capacity in the mode division multiplexing (MDM) technique. A novel and simple structure of ring-core photonic crystal fiber (RC-PCF) is proposed in this paper. The ring core is doped by the Schott sulfur difluoride material and the cladding region is composed of fused silica with one layer of well-patterned air-holes. The guiding of Terahertz (THz) OAM beams with 58 OAM modes over 0.70 THz (0.20 THz–0.90 THz) frequency is supported by this proposed RC-PCF. The OAM modes are well-separated for their large refractive index difference above 10−4. The dispersion profile of each mode is varied in the range of 0.23–7.77 ps/THz/cm. The ultra-low confinement loss around 10−9 dB/cm and better mode purity up to 0.932 is achieved by this RC-PCF. For these good properties, the proposed fiber is a promising candidate to be applied in the THz OAM transmission systems with high feasibility and high capacity.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Izaddeen Kabir Yakasai ◽  
Atta Rahman ◽  
Pg Emeroylariffion Abas ◽  
Feroza Begum

AbstractA porous core photonic crystal fiber (PCF) for transmitting terahertz waves is reported and characterized using finite element method. It is shown that by enveloping an octagonal core consisting of only circular air holes in a hexagonal cladding, it is possible to attain low effective material loss that is 73.8% lower than the bulk material absorption loss at 1.0 THz operating frequency. Moreover, a low confinement loss of 7.53×10–5 cm−1 and dispersion profile of 1.0823±0.06 ps/THz/cm within 0.7–1 THz are obtained using carefully selected geometrical design parameters. Other guiding properties such as single-mode operation, bending loss, and effective area are also investigated. The structural design of this porous core PCF is comparatively simple since it contains noncomplex lattices and circular shaped air holes; and therefore, may be implemented using existing fabrication techniques. Due to its auspicious guiding properties, the proposed fiber may be used in single mode terahertz imaging and other short distance terahertz applications.


Sign in / Sign up

Export Citation Format

Share Document