scholarly journals Construction of Inverse Unit Regular Monoids from a Semilattice and a Group

2018 ◽  
Vol 7 (4.36) ◽  
pp. 950
Author(s):  
Sreeja V.K

This paper is a continuation of a previous paper [6] in which the structure of certain unit regular semigroups called R-strongly unit regular monoids has been studied. A monoid S is said to be unit regular if for each element s Î S there exists an element u in the group of units G of S such that s = sus. Hence where su is an idempotent and is a unit. A unit regular monoid S is said to be a unit regular inverse monoid if the set of idempotents of S form a semilattice. Since inverse monoids are R unipotent, every element of a unit regular inverse monoid can be written as s = eu where the idempotent part e is unique and u is a unit. Here we give a detailed study of inverse unit regular monoids and the results  are mainly based on [10]. The relations between the semilattice of idempotents and the group of units in unit regular inverse monoids are better identified in this case. .

2018 ◽  
Vol 7 (2.13) ◽  
pp. 306
Author(s):  
Sreeja V K

Let S be a unit regular semigroup with group of units G = G(S) and semilattice of idempotents E = E(S). Then for every there is a such that Then both xu and ux are idempotents and we can write or .Thus every element of a unit regular inverse monoid is a product of a group element and an idempotent. It is evident that every L-class and every R-class contains exactly one idempotent where L and R are two of Greens relations. Since inverse monoids are R unipotent, every element of a unit regular inverse monoid can be written as s = eu where the idempotent part e is unique and u is a unit. A completely regular semigroup is a semigroup in which every element is in some subgroup of the semigroup. A Clifford semigroup is a completely regular inverse semigroup. Characterization of unit regular inverse monoids in terms of the group of units and the semilattice of idempotents is a problem often attempted and in this direction we have studied the structure of unit regular inverse monoids and Clifford monoids. 


2012 ◽  
Vol 93 (3) ◽  
pp. 225-237
Author(s):  
IGOR DOLINKA

AbstractFor a finite Clifford inverse algebra $A$, with natural order meet-semilattice ${Y}_{A} $ and group of units ${G}_{A} $, we show that the inverse monoid obtained as the semidirect product ${ Y}_{A}^{1} {\mathop{\ast }\nolimits}_{\rho } {G}_{A} $ has a log-polynomial free spectrum whenever $\rho $ is a term-expressible left action of ${G}_{A} $ on ${Y}_{A} $ and all subgroups of $A$ are nilpotent. This yields a number of examples of finite inverse monoids satisfying the Seif conjecture on finite monoids whose free spectra are not doubly exponential.


2010 ◽  
Vol 88 (3) ◽  
pp. 385-404 ◽  
Author(s):  
M. V. Lawson

AbstractWe prove that the category of boolean inverse monoids is dually equivalent to the category of boolean groupoids. This generalizes the classical Stone duality between boolean algebras and boolean spaces. As an instance of this duality, we show that the boolean inverse monoid Cn associated with the Cuntz groupoid Gn is the strong orthogonal completion of the polycyclic (or Cuntz) monoid Pn. The group of units of Cn is the Thompson group Vn,1.


2011 ◽  
Vol 04 (04) ◽  
pp. 653-670
Author(s):  
A. R. Rajan ◽  
V. K. Sreeja

In this paper we give a detailed study of R-strongly unit regular monoids. The relations between the biordered set of idempotents and the group of units in unit regular semigroups are better identified here. Conversely, starting from a regular biordered set E and a group G we construct a R-strongly unit regular semigroup S for which the set of idempotents E(S) is isomorphic to E as a biordered set and the group of units G(S) is isomorphic to G. The conditions to be satisfied by G and E are also listed.


1993 ◽  
Vol 03 (01) ◽  
pp. 79-99 ◽  
Author(s):  
STUART W. MARGOLIS ◽  
JOHN C. MEAKIN

The relationship between covering spaces of graphs and subgroups of the free group leads to a rapid proof of the Nielsen-Schreier subgroup theorem. We show here that a similar relationship holds between immersions of graphs and closed inverse submonoids of free inverse monoids. We prove using these methods, that a closed inverse submonoid of a free inverse monoid is finitely generated if and only if it has finite index if and only if it is a rational subset of the free inverse monoid in the sense of formal language theory. We solve the word problem for the free inverse category over a graph Γ. We show that immersions over Γ may be classified via conjugacy classes of loop monoids of the free inverse category over Γ. In the case that Γ is a bouquet of X circles, we prove that the category of (connected) immersions over Γ is equivalent to the category of (transitive) representations of the free inverse monoid FIM(X). Such representations are coded by closed inverse submonoids of FIM(X). These monoids will be constructed in a natural way from groups acting freely on trees and they admit an idempotent pure retract onto a free inverse monoid. Applications to the classification of finitely generated subgroups of free groups via finite inverse monoids are developed.


2002 ◽  
Vol 12 (04) ◽  
pp. 525-533 ◽  
Author(s):  
KEUNBAE CHOI ◽  
YONGDO LIM

In this paper we prove that if a group G acts faithfully on a Hausdorff space X and acts freely at a non-isolated point, then the Birget–Rhodes expansion [Formula: see text] of the group G is isomorphic to an inverse monoid of Möbius type obtained from the action.


2001 ◽  
Vol 64 (1) ◽  
pp. 157-168 ◽  
Author(s):  
Benjamin Steinberg

This papar constructs all homomorphisms of inverse semigroups which factor through an E-unitary inverse semigroup; the construction is in terms of a semilattice component and a group component. It is shown that such homomorphisms have a unique factorisation βα with α preserving the maximal group image, β idempotent separating, and the domain I of β E-unitary; moreover, the P-representation of I is explicitly constructed. This theory, in particular, applies whenever the domain or codomain of a homomorphism is E-unitary. Stronger results are obtained for the case of F-inverse monoids.Special cases of our results include the P-theorem and the factorisation theorem for homomorphisms from E-unitary inverse semigroups (via idempotent pure followed by idempotent separating). We also deduce a criterion of McAlister–Reilly for the existence of E-unitary covers over a group, as well as a generalisation to F-inverse covers, allowing a quick proof that every inverse monoid has an F-inverse cover.


1994 ◽  
Vol 36 (2) ◽  
pp. 163-171 ◽  
Author(s):  
T. S. Blyth ◽  
Emília Giraldes ◽  
M. Paula O. Marques-Smith

A unit regular semigroup [1, 4] is a regular monoid S such that H1 ∩ A(x) ≠ Ø for every xɛS, where H1, is the group of units and A(x) = {y ɛ S; xyx = x} is the set of associates (or pre-inverses) of x. A uniquely unit regular semigroupis a regular monoid 5 such that |H1 ∩ A(x)| = 1. Here we shall consider a more general situation. Specifically, we consider a regular semigroup S and a subsemigroup T with the property that |T ∩ A(x) = 1 for every x ɛ S. We show that T is necessarily a maximal subgroup Hα for some idempotent α. When Sis orthodox, α is necessarily medial (in the sense that x = xαx for every x ɛ 〈E〉) and αSα is uniquely unit orthodox. When S is orthodox and α is a middle unit (in the sense that xαy = xy for all x, y ɛ S), we obtain a structure theorem which generalises the description given in [2] for uniquely unit orthodox semigroups in terms of a semi-direct product of a band with a identity and a group.


2019 ◽  
Vol 29 (08) ◽  
pp. 1467-1498 ◽  
Author(s):  
Ganna Kudryavtseva

We initiate the study of expansions of monoids in the class of two-sided restriction monoids and show that generalizations of the Birget–Rhodes prefix group expansion, despite the absence of involution, have rich structure close to that of relatively free inverse monoids. For a monoid [Formula: see text] and a class of partial actions of [Formula: see text], determined by a set, [Formula: see text], of identities, we define [Formula: see text] to be the universal [Formula: see text]-generated two-sided restriction monoid with respect to partial actions of [Formula: see text] determined by [Formula: see text]. This is an [Formula: see text]-restriction monoid which (for a certain [Formula: see text]) generalizes the Birget–Rhodes prefix expansion [Formula: see text] of a group [Formula: see text]. Our main result provides a coordinatization of [Formula: see text] via a partial action product of the idempotent semilattice [Formula: see text] of a similarly defined inverse monoid, partially acted upon by [Formula: see text]. The result by Fountain, Gomes and Gould on the structure of the free two-sided restriction monoid is recovered as a special case of our result. We show that some properties of [Formula: see text] agree well with suitable properties of [Formula: see text], such as being cancellative or embeddable into a group. We observe that if [Formula: see text] is an inverse monoid, then [Formula: see text], the free inverse monoid with respect to strong premorphisms, is isomorphic to the Lawson–Margolis–Steinberg generalized prefix expansion [Formula: see text]. This gives a presentation of [Formula: see text] and leads to a model for [Formula: see text] in terms of the known model for [Formula: see text].


2015 ◽  
Vol 25 (01n02) ◽  
pp. 301-323 ◽  
Author(s):  
John Meakin ◽  
Nóra Szakács

It is well known that under mild conditions on a connected topological space 𝒳, connected covers of 𝒳 may be classified via conjugacy classes of subgroups of the fundamental group of 𝒳. In this paper, we extend these results to the study of immersions into two-dimensional CW-complexes. An immersion f : 𝒟 → 𝒞 between CW-complexes is a cellular map such that each point y ∈ 𝒟 has a neighborhood U that is mapped homeomorphically onto f(U) by f. In order to classify immersions into a two-dimensional CW-complex 𝒞, we need to replace the fundamental group of 𝒞 by an appropriate inverse monoid. We show how conjugacy classes of the closed inverse submonoids of this inverse monoid may be used to classify connected immersions into the complex.


Sign in / Sign up

Export Citation Format

Share Document