Performance Based Seismic Evaluation of G+6 RC Buildings Considering Soil Structure Interaction

Author(s):  
Ramesh Baragani ◽  
◽  
Dr.S.S Dyavanal
2021 ◽  
Vol 791 (1) ◽  
pp. 012044
Author(s):  
Zhubing Zhu ◽  
Yongfeng Cheng ◽  
Zhicheng Lu ◽  
Haibo Wang ◽  
Yaodong Xue ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Panpan Zhai ◽  
Peng Zhao ◽  
Yang Lu ◽  
Chenying Ye ◽  
Feng Xiong

Most conventional seismic fragility analyses of RC buildings usually ignore or greatly simplify the soil-structure interaction (SSI), and the maximum interstory drift ratio (MIDR) is often adopted to establish seismic fragility curves. In this work, an eight-story RC building was designed to study the influence of the SSI on the seismic fragility of RC buildings. Three double-parameter damage models (DPDMs) were considered for the fragility assessment: the Park–Ang model, the Niu model, and the Lu–Wang model. Results show that considering SSI induces a higher fragility than that of the fixed model and that employing the DPDMs for the fragility analysis provides more reasonable results than those evaluated using the MIDR damage index.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 125
Author(s):  
Muhammet Kamal ◽  
Mehmet Inel

This paper investigates the correlation between ground motion parameters and displacement demands of mid-rise RC frame buildings on soft soils considering the soil-structure interaction. The mid-rise RC buildings are represented by using 5, 8, 10, 13, and 15-storey frame building models with no structural irregularity. A total of 105 3D nonlinear time history analyses were carried out for 21 acceleration records and 5 different building models. The roof drift ratio (RDR) obtained as inelastic displacement demands at roof level normalized by the building height is used for demand measure, while 20 ground motion parameters were used as intensity measure. The outcomes show velocity related parameters such as Housner Intensity (HI), Root Mean Square of Velocity (Vrms), Velocity Spectrum Intensity (VSI) and Peak Ground Velocity (PGV), which reflect inelastic displacement demands of mid-rise buildings as a damage indicator on soft soil deposit reasonably well. HI is the leading parameter with the strongest correlation. However, acceleration and displacement related parameters exhibit poor correlation. This study proposed new combined multiple ground motion parameter equations to reflect the damage potential better than a single ground motion parameter. The use of combined multiple parameters can be effective in determining seismic damages by improving the scatter by at least 24% compared to the use of a single parameter.


Sign in / Sign up

Export Citation Format

Share Document