forward directivity
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 3)

Author(s):  
Ming-Hsuan Yen ◽  
Sebastian von Specht ◽  
Yen-Yu Lin ◽  
Fabrice Cotton ◽  
Kuo-Fong Ma

ABSTRACT Ground motion with strong-velocity pulses can cause significant damage to buildings and structures at certain periods; hence, knowing the period and velocity amplitude of such pulses is critical for earthquake structural engineering. However, the physical factors relating the scaling of pulse periods with magnitude are poorly understood. In this study, we investigate moderate but damaging earthquakes (Mw 6–7) and characterize ground-motion pulses using the method of Shahi and Baker (2014) while considering the potential static-offset effects. We confirm that the within-event variability of the pulses is large. The identified pulses in this study are mostly from strike-slip-like earthquakes. We further perform simulations using the frequency–wavenumber algorithm to investigate the causes of the variability of the pulse periods within and between events for moderate strike-slip earthquakes. We test the effect of fault dips, and the impact of the asperity locations and sizes. The simulations reveal that the asperity properties have a high impact on the pulse periods and amplitudes at nearby stations. Our results emphasize the importance of asperity characteristics, in addition to earthquake magnitudes for the occurrence and properties of pulses produced by the forward directivity effect. We finally quantify and discuss within- and between-event variabilities of pulse properties at short distances.


Structures ◽  
2021 ◽  
Vol 30 ◽  
pp. 803-817
Author(s):  
Sayed Mahmoud ◽  
Ali Alqarni ◽  
Joseph Saliba ◽  
Amal H. Ibrahim ◽  
Magdy genidy ◽  
...  

Author(s):  
M. A. Bravo-Haro ◽  
J. R. Virreira ◽  
A. Y. Elghazouli

AbstractThis paper describes a detailed numerical investigation into the inelastic displacement ratios of non-structural components mounted within multi-storey steel framed buildings and subjected to ground motions with forward-directivity features which are typical of near-fault events. The study is carried out using detailed multi-degree-of-freedom models of 54 primary steel buildings with different structural characteristics. In conjunction with this, 80 secondary non-structural elements are modelled as single-degree-of-freedom systems and placed at every floor within the primary framed structures, then subsequently analysed through extensive dynamic analysis. The influence of ground motions with forward-directivity effects on the mean response of the inelastic displacement ratios of non-structural components are compared to the results obtained from a reference set of strong-ground motion records representing far-field events. It is shown that the mean demand under near-fault records can be over twice as large as that due to far-fault counterparts, particularly for non-structural components with periods of vibration lower than the fundamental period of the primary building. Based on the results, a prediction model for estimating the inelastic displacement ratios of non-structural components is calibrated for far-field records and near-fault records with directivity features. The model is valid for a wide range of secondary non-structural periods and primary building fundamental periods, as well as for various levels of inelasticity induced within the secondary non-structural elements.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jinping Yang ◽  
Peizhen Li ◽  
Hang Jing ◽  
Meng Gao

This paper studies the influence of the characteristics of the near-fault ground motion on the seismic responses of the structure with energy dissipation devices including soil-structure interaction (SSI). A ten-story reinforced concrete frame rested on soft site is introduced, and the viscous dampers added in the frame are designed. The numerical analysis method of the soil-structure system with viscous dampers is established through ANSYS program. In addition, the response spectra of the main characteristics of the near-fault ground motion, like hanging wall effect, velocity pulse-like effect, and forward-directivity effect, are investigated carefully to learn the features of spectra energy distribution. And then, the dynamic time-history analysis is performed on the SSI system with and without viscous dampers subjected to the selected near-fault ground motion. The study reveals that the seismic responses of the structure subjected to near-fault ground motion with hanging wall effect are obviously larger than those of the footwall effect, indicating the distinct hanging wall effects on the structural dynamic responses. In addition, the performance of the structure with viscous dampers is more influenced by the ground motion containing fling-step effect than that with forward-directivity effect. Moreover, the influence of the horizontal component of forward-directivity ground motion on the seismic responses of the structure is more obvious than that of parallel component ground motion. Consequently, the hanging wall effect, velocity pulse, and horizontal component in forward-directivity effect of the near-fault ground motion have distinct influence on the seismic responses of the structure with energy dissipation devices considering SSI effect, providing insight towards the performance-based seismic design of buildings rested at the near-fault sites considering the seismic SSI effect.


Sign in / Sign up

Export Citation Format

Share Document