ANFIS Based Forward and inverse Kinematics of Six Arm Robot Manipulator with Six Degree of Freedom

Author(s):  
Er. Harpreet Singh, ◽  
◽  
Dr. Naveen Dhillon ◽  
Er. Kailash Rawat
2000 ◽  
Author(s):  
Chunhao Joseph Lee ◽  
Constantinos Mavroidis

Abstract This paper presents robust and optimal control methods to suppress vibrations of flexible payloads carried by robotic systems. A new improved estimator in discrete-time H2 optimal control design based on the Kalman Filter predictor form is developed here. Two control design methods using state-space models, LQR and H2 Optimal Design, in discrete-time domain are applied and compared. The manipulator joint encoders and the wrist-mounted six-degree-of-freedom force/torque sensor provide the control feedback. A complete dynamic model of the robot/payload system is taken into account to synthesize the controllers. Experimental verifications of both methods are performed using a Mitsubishi five-degree-of-freedom robot manipulator that carries a flexible beam. It is shown that both methods damp out the vibrations of the payload very effectively.


Author(s):  
Sukhdeep S. Dhami ◽  
Ashutosh Sharma ◽  
Rohit Kumar ◽  
Parveen Kalra

The number of industrial and household robots is fast increasing. A simpler human-robot interaction is preferred in household robotic applications as well as in hazardous environments. Gesture based control of robots is a step in this direction. In this work, a virtual model of a 3-DOF robotic manipulator is developed using V-Realm Builder in MATLAB and the mathematical models of forward and inverse kinematics of the manipulator are coded in MATLAB/Simulink software. Human hand gestures are captured using a smartphone with accelerometer and orientation sensors. A wireless interface is provided for transferring smartphone sensory data to a laptop running MATLAB/Simulink software. The hand gestures are used as reference signal for moving the wrist of the robot. A user interface shows the instantaneous joint angles of robot manipulator and spatial coordinates of robot wrist. This simple yet effective tool aids in learning a number of aspects of robotics and mechatronics. The animated graphical model of the manipulator provides a better understanding of forward and inverse kinematics of robot manipulator. The robot control using hand gestures generates curiosity in student about interfacing of hardware with computer. It may also stimulate new ideas in students to develop virtual learning tools.


Author(s):  
D. Zlatanov ◽  
M. Q. Dai ◽  
R. G. Fenton ◽  
B. Benhabib

Abstract In this paper a three-legged 6-dof platform-type parallel manipulator is described. Each of the legs is a serial subchain with three revolute joints connected to the output platform via a spherical joint. Due to the proposed asymmetrical 3-2-1 distribution of the controlled joints, a closed-form solution exists to the forward kinematics problem. The mechanical design of the manipulator has been developed. The forward and inverse kinematics as well as the instantaneous kinematics of the mechanism have been solved analytically.


Author(s):  
Constantinos Mavroidis ◽  
Bernard Roth

Abstract The inverse kinematics of series-chain, six-degree-of-freedom manipulators has been developed to the point where it yields all possible configurations for a given end-effector position and orientation. In this paper we use the methods of inverse kinematics to uncover the conditions on the structural parameters which cause a manipulator to yield a lower maximum number of configurations than its general class. It is shown that the following conditions can cause a diminution In the maximum number of possible configurations: parallel joint axes, perpendicular joint axes, intersecting joint axes, and Bennett geometries. Using these geometries in 6R, 5R1P, 4R2P and 3R3P chains, this paper determines the reduction in degree of their characteristic polynomials.


2012 ◽  
Vol 4 (4) ◽  
Author(s):  
Chao Chen ◽  
Thibault Gayral ◽  
Stéphane Caro ◽  
Damien Chablat ◽  
Guillaume Moroz ◽  
...  

A new six-dof epicyclic-parallel manipulator with all actuators allocated on the ground is introduced. It is shown that the system has a considerably simple kinematics relationship, with the complete direct and inverse kinematics analysis provided. Further, the first and second links of each leg can be driven independently by two motors. The serial and parallel singularities of the system are determined, with an interesting feature of the system being that the parallel singularity is independent of the position of the end-effector. The workspace of the manipulator is also analyzed with future applications in haptics in mind.


1990 ◽  
Vol 2 (4) ◽  
pp. 308-315 ◽  
Author(s):  
François Pierrot ◽  
◽  
Masaru Uchiyama ◽  
Pierre Dauchez ◽  
Alain Fournier ◽  
...  

This paper presents a six-degree-of-freedom parallel robot which has been recently designed. The design is based on a three-degree-of-freedom parallel robot called DELTA which was designed in Switzerland by EPFL. First, we give equations corresponding to different models of the DELTA robot: forward and inverse kinematics as well as inverse dynamics. An important feature of our method in deriving these models is to use a “good” set of parameters in order to simplify the equations. Then, in an attempt to extend the principle of the DELTA robot mechanical structure to a six-degree-offreedom parallel robot, we propose a new design called HEXA. Equations for kinematics and dynamics of the HEXA robot are presented and show that it has the same dynamic capabilities as the DELTA robot because, like the DELTA robot, it can be built with light-weight materials and easily modeled. Finally, we discuss optimization of the HEXA robot mechanical structure.


1996 ◽  
Vol 118 (1) ◽  
pp. 22-28 ◽  
Author(s):  
C. M. Gosselin

This paper introduces a novel approach for the computation of the inverse dynamics of parallel manipulators. It is shown that, for this type of manipulator, the inverse kinematics and the inverse dynamics procedures can be easily parallelized. The result is a closed-form efficient algorithm using n processors, where n is the number of kinematic chains connecting the base to the end-effector. The dynamics computations are based on the Newton-Euler formalism. The parallel algorithm arises from a judicious choice of the coordinate frames attached to each of the legs, which allows the exploitation of the parallel nature of the mechanism itself. Examples of the application of the algorithm to a planar three-degree-of-freedom parallel manipulator and to a spatial six-degree-of-freedom parallel manipulator are presented.


2021 ◽  
pp. 1-13
Author(s):  
Louis-Thomas Schreiber ◽  
Clement Gosselin

Abstract This paper introduces a classification of the inverse kinematics solutions (or robot postures) of six-degree-of-freedom serial robots with a geometry based on or similar to Universal Robots' arms. The solution of the inverse kinematics problem is first presented briefly and the equations required to classify the robot postures(branches) based on the joint coordinates are then introduced.


Sign in / Sign up

Export Citation Format

Share Document