MECHANICAL PROPERTIES OF WARM MIXED USING POLYMER RECLAIMED ASPHALT WITH NEW AGGREGATE (PRAP-WARM MIX)

Author(s):  
Weerakaset Suanpaga

The purpose of this study is to determine the appropriated mixed proportion of asphalt concrete using Polymer Reclaimed Asphalt Pavement, new aggregate and Advera (PRAP-Warm Mixed) that were mixed at warm temperature. Then the Mechanical Properties of new mixed asphalt concrete samples were tested following the standards of the Department of Highway, Thailand. In experimental design, the range of mixing temperature varied as 140°C, 145°C, 150°C, 155°C, and percentage of Advera added varied at 0.20, 0.25, 0.30 and 0.35 percent by weight of aggregate. The engineering properties of PRAP samples obtained from this study showed that the optimum mixing ratio was 0.20 percent at 140°C has a Stability value of 2530 lbs, a flow of 12 in a particle size of VMA 16.2, a strength index, 85 percent of the test results are in line with the requirements of the Department of Highways. Then using 70 percent of PRAP-warm mix with 30 percent of new material at 140°C and add 0.20 percent of Advera that is the best-mixed proportion. The normal temperature of PMA mixing is higher than 170°C, in this case using PRAP-Warm mix can reduce temperature lesser than 150°C then this mixing process can save fuel consumption. Thus this study is useful for environmental perspectives.

2019 ◽  
Vol 278 ◽  
pp. 01012
Author(s):  
Raudhah ◽  
R. Jachrizal Sumabrata ◽  
Sigit Pranowo Hadiwardoyo

Reclaimed asphalt pavement (RAP) comprises removed pavement materials containing high-quality aggregates and asphalt which can be recycled as materials for new pavement construction. It is removed continually for reconstruction, resurfacing, and maintenance purposes, and if not recycled will become waste. This paper determines the influence of using different RAP percentages and asphalt content in warm mix asphalt on the Marshall test results for asphalt concrete binder course (AC-BC) using Retona Blend 55. The percentages of RAP are determined by analyzing the gradation of the existing aggregates in RAP and adding virgin aggregates so that it meets the standard gradation for AC-BC specified by the Ministry of Public Works and Housing. The RAP percentages in the asphalt mixes in this study are 35%, 45%, and 51.55% of total aggregates, while the asphalt contents are 5%, 6%, and 7% of the total mix. To determine the influence of RAP percentage and asphalt content, and to discover if there is any influence from the interaction between these two factors, the analysis is performed using a factorial design. The results of this study show that variation in RAP percentages in the mix has no significant influence on stability, flow, and Marshall quotient, but there is significant influence on void in mineral aggregates (VMA), void in mix (VIM), and void filled with asphalt (VFA). Correlations of 97.5%, 80%, and 95.1%, respectively show that increase in RAP percentage increases VMA and VIM and decreases VFA. The interaction between RAP percentage and asphalt content has no significant influence on Marshall test results.


2007 ◽  
Vol 34 (5) ◽  
pp. 581-588 ◽  
Author(s):  
J S Chen ◽  
P Y Chu ◽  
Y Y Lin ◽  
K Y Lin

Abstract: The purpose of this study was to recommend a testing procedure to detect the content of reclaimed asphalt pavement (RAP) used in hot-mix asphalt mixtures. Asphalt was extracted from RAP for use in blending with new binder and aggregate. The recovered binders were blended with virgin asphalt (AC-10) at 10 different concentrations. A concept called relative energy loss was proposed to determine the engineering properties of recycled asphalt concrete (RAC). The relative energy loss was found to be directly related to the resistance of RAC to moisture-induced damage. A noticeable increase in relative energy loss with as much as 50% RAP was observed. At 20% RAP, there was not enough RAP to change binder or mixture properties. The predicted performance of mixtures containing up to 40% RAP by weight was shown to be similar to that of virgin material mixtures. A model was developed to estimate the RAP content in terms of penetration, viscosity, and relative energy loss. Key words: reclaimed asphalt pavement, relative energy loss, moisture sensitivity.


Author(s):  
Tandra Bagchi ◽  
Zahid Hossain ◽  
Mohammed Ziaur Rahaman ◽  
Gaylon Baumgardner

Multi-scale evaluation of the rheological and mechanical properties of asphalt binder has substantial importance in understanding the binder’s micro- and macro-scale properties. This study compares the macro- and micro-scale mechanistic properties of asphalt binders. Test samples used in this study include performance grade binders (PG 64-22) from two different sources along with their modified counterparts. The modifiers include polyphosphoric acid (PPA), styrene-butadiene-styrene (SBS), a combination of SBS and PPA, and reclaimed asphalt pavement. To achieve the goal of this study, atomic force microscope technology was utilized to estimate the asphalt binder’s micro-mechanical properties (e.g., Derjaguin, Muller, Toropov modulus and deformation). On the other hand, data on the macro-scale properties—such as rutting factor (G*/sinδ), consistency and penetration—of the selected binders were analyzed and compared with the aforementioned micro-level properties. The comparative analyses indicated that the micro-mechanical properties of asphalt binders followed a linear trend with the macro-scale properties. The findings of this study are expected to help researchers and pavement professionals in modeling asphalt materials when multi-scale effects are deemed to be necessary.


2020 ◽  
Vol 32 (11) ◽  
pp. 04020348
Author(s):  
Puru Dubey ◽  
Suraj Paswan ◽  
Mayank Sukhija ◽  
Nikhil Saboo

2020 ◽  
Vol 230 ◽  
pp. 116968 ◽  
Author(s):  
Juliana Montañez ◽  
Silvia Caro ◽  
Daniel Carrizosa ◽  
Alejandro Calvo ◽  
Xiomara Sánchez

Sign in / Sign up

Export Citation Format

Share Document