INVESTIGATION OF DAMAGE ON DERBENDIKHAN DAM DURING EARTHQUAKE EXCITATION

Author(s):  
Cagri Mollamahmutoglu ◽  
Idris Bedirhanoglu

In this study, the performance of a damaged dam was evaluated through a three-dimensional finite element model. The dam is located in Derbendikhan city of Northern Iraq and damaged during a 7.3 magnitude earthquake which was happened 30 kilometers south of Halabja city. Derbendikhan dam which was built between the years 1956-1961 is a clay-core rock fill dam. The damage of the dam was investigated at the site right after the earthquake and some cracks were observed in the main body of the dam. The main goal of this work is to present the results of the survey which was conducted at the site and investigating the damage development mechanism through a realistic three-dimensional finite element model of the dam. As complying with the observations at the site, the finite element analysis has shown that the primary failure mechanism is due to the separation of the core and rock fill sections at the downstream side of the dam.

Author(s):  
V. Prakash ◽  
R. J. Montague

Abstract This paper presents the diagnostics of the effects of vibration on the precise placement of electronic components in a surface mount assembly process. Experimental Modal Analysis using present day software/hardware as well as a three dimensional finite element model are performed on the machine structure. Correlation between the experiment and finite element model are also performed and the strength of using the finite element model as a test model for contemplating any design alterations are presented.


2010 ◽  
Vol 97-101 ◽  
pp. 3924-3927 ◽  
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Zhong Hu Jia ◽  
Yong Gao ◽  
Wen Lin Liu

Three-dimensional finite element model of a bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of surface strains and load transfer ratio(LTR) were compared with results from finite element analysis. The results show that three-dimensional finite element model of bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of different parameters on the mechanical behaviour of single lap bolted joints. The results show that straight hole, small bolt diameter, and big hole pitch are selected first for bolted joint if other conditions allowed, and effect of bolt material on LTR of joint is small for small load. Interference and pre-stress should be strictly controlled for bolted joints in order to attain the best fatigue capability of lap joint.


Author(s):  
Suleyman Nazif Orhan ◽  
Mehmet Hamit Ozyazicioglu

The main purpose of this study is to develop a validated three-dimensional finite element model of sternum closure techniques. For this aim, the finite element method analysis results of three closure methods were compared with experimental test results. Also, three more closure techniques are simulated numerically to study the effect of the number of wires used in the manubrium and xiphoid regions. A three-dimensional model of polyurethane sternum foam was created based on computed tomography images. Six different closure techniques using steel wire, steel bands and ZipFix bands were modeled on the sternum and transferred into a three-dimensional finite element model. The sternum was modeled as an isotropic bilinear-elasto-plastic material, and nonlinear contact conditions were applied. The models were analyzed under lateral distraction loading, and load-displacement curves were obtained from displacements at the incision line. Allowable loads and stiffness values of the methods were evaluated from these curves. The results showed the importance of the including material as well as geometric nonlinearities in the simulations to obtain realistic results from the numerical analyses. Also, the analyses showed that closures that include steel or ZipFix bands are superior to conventional wiring, and addition of a single wire at the manubrium and xiphoid regions significantly improved the efficiency of the closure techniques.


2011 ◽  
Vol 52-54 ◽  
pp. 2191-2196
Author(s):  
Yu Qing Liu ◽  
Yan Xiang Wu ◽  
Hai Bo Huo

In this paper, we established a bridge three-dimensional finite element model for the structural dynamic analysis according to the geometry and material properties of a bridge Li Gong Yi Qiao at Wuhan University of Technology. On the other hand, we tested the dynamic characteristics of the bridge under environmental excitation by means of bridge sensors arranged at different points. The modal parameters of the bridge were identified through fitting the admittance circle. The comparison between the measured results and the theoretical studies has shown that the low-order vibration frequency and mode obtained from finite element analysis generally consistent with those from test. The finite element model provides a scientific basis for condition monitoring of the bridge in actual operations.


2020 ◽  
Author(s):  
Kai Guo ◽  
Jiawei Lu ◽  
Ziqi Zhu ◽  
Beiduo Shen ◽  
Tongde Wu ◽  
...  

Abstract Background: ACDF is the main treatment of cervical disease. Adjacent Segment Degeneration (ASD) is the main complication of long-term follow-up of ACDF. we conduct a detailed study of ACDF by means of three-dimensional finite element analysis and find the effect of screw placement and location on the occurrence of ASD.Methods: The cervical computed tomography (CT) data (layer thickness of 0.625 mm) for a 30-year-old healthy male volunteer was collected. All the data were combined to create a C2-7 3D finite element model using Abaqus software. Based on the data and the actual surgical maneuver, a screw positioning model was established, in order to observe the cervical range of motion (ROM) with different positions of screw, as well as the pressure change of the adjacent segment intervertebral disc.Results: The proposed finite element model of cervical spine was effective, and ROM on all directions of C4-C6 segments changed after ACDF surgery. Under the same torque settings, compared with the control group, C2/3 segment rotational ROM increased; C2/3, C3/4 segments lateral flexion ROM also increased. Regarding the influence of screw positioning, it has limited influence on the ROM and The intervertebral disc pressure (IDP), and compared with different horizontal positions, different vertical positions imposed greater influence on the ROM and IDP. Conclusions: For ACDF surgery, positioning the screw at the anterior inferior part of the cervical vertebral body could provide more natural cervical ROM and the least IDP, while maintaining high biomechanical stability, and is more in line with human biomechanical requirements.


Author(s):  
Zuo Sun ◽  
David A. Dillard

A three-dimensional nonlinear finite element analysis model is presented to study mixed-mode interfacial delamination for a pull-off test consisting of a thin film strip debonded from a glass substrate. Since the strain energy release rates of all three modes (Mode I, Mode II, and Mode III) and the mode mixities vary along the width of the debond front, prediction of the in-situ shape of the debond front remains an interesting and challenging topic. A cohesive zone model is incorporated into the three-dimensional finite element model to predict the interfacial crack propagation profile for the film deformation regime ranging from bending plate to stretching membrane. This three-dimensional finite element model is found to provide additional insights for interfacial delamination for the pull-off test.


2002 ◽  
Vol 124 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Thomas C. Gasser ◽  
Christian A. J. Schulze-Bauer ◽  
Gerhard A. Holzapfel

Clamp induced injuries of the arterial wall may determine the outcome of surgical procedures. Thus, it is important to investigate the underlying mechanical effects. We present a three-dimensional finite element model, which allows the study of the mechanical response of an artery–treated as a two-layer tube-during arterial clamping. The important residual stresses, which are associated with the load-free configuration of the artery, are also considered. In particular, the finite element analysis of the deformation process of a clamped artery and the associated stress distribution is presented. Within the clamping area a zone of axial tensile peak-stresses was identified, which (may) cause intimal and medial injury. This is an additional injury mechanism, which clearly differs from the commonly assumed wall damage occurring due to compression between the jaws of the clamp. The proposed numerical model provides essential insights into the mechanics of the clamping procedure and the associated injury mechanisms. It allows detailed parameter studies on a virtual clamped artery, which can not be performed with other methodologies. This approach has the potential to identify the most appropriate clamps for certain types of arteries and to guide optimal clamp design.


2012 ◽  
Vol 430-432 ◽  
pp. 383-386 ◽  
Author(s):  
Ke Jiang Zang ◽  
Yan Ma ◽  
Ning Sun ◽  
Zheng Ke Niu ◽  
Xing Chun Gui ◽  
...  

Based on the study of the mechanics features of pneumatic artificial muscle including the nonlinearities in material, geometry, and with the method of nonlinear finite element analysis, the three-dimensional finite element model of a pneumatic artificial muscle was established. The analytical results were confirmed by the experiment with the use of a pneumatic artificial muscle test bench.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document