COMBINED EXTRUSION OF GLASSES WITH A CONICAL BOTTOM. CALCULATION OF GEOMETRIC PARAMETERS AND PREREQUISITES FOR CALCULATING THE DEFORMED STATE OF THE WORKPIECE

Author(s):  
A. L. Vorontsov ◽  
D. A. Lebedeva

All geometric formulas necessary for designing the process of extrusion of glasses with a conical bottom are obtained. Further, the obtained formulas will be used to develop scientifically based methods for calculating technological operations of free and constrained extrusion. The substantiation of the use of the wellknown methods of A. L. Vorontsov, developed for extrusion of glasses with a punch with a flat end, for calculating the deformed state of the workpiece is given.

Author(s):  
A. L. Vorontsov ◽  
D. A. Lebedeva

All geometric formulas necessary for designing the process of extrusion of glasses with a conical bottom are obtained. Further, the obtained formulas will be used to develop scientifically based methods for calculating technological operations of free and constrained extrusion. The substantiation of the use of the wellknown methods of A. L. Vorontsov, developed for extrusion of glasses with a punch with a flat end, for calculating the deformed state of the workpiece is given.


Author(s):  
Elvira R. Kuzhakhmetova

Relevance. In the construction of buildings and structures, driven piles with a square cross section are most widely used. To install them in the working position, the percussion method is used. However, in cramped conditions, shock loads can lead to dangerous conditions and destruction of structures of nearby buildings. In such a situation, it is necessary to use rammed piles, since technological solutions for their construction are not associated with shock effects on the soil. One such solution is the new rammed cone-shaped pile design, which is installed without excavation. The aim of the study is to analyze the influence of the geometric parameters of the pile on its bearing capacity under the action of external loads, in particular, the angle of its taper. Methods. The results of a numerical analysis of the stress-strain state of a pile operating in a soil massif were obtained by the finite element method. Results. In the computational study, a comparative analysis of the state of piles of different lengths and geometries under the action of external loads was carried out. The influence of the angle of inclination of the lateral surface of the pile on its bearing capacity is considered. Rationalization of the pile design was carried out taking into account the total costs of building materials. Variants of geometric and design solutions for piles with a length L from 1 to 10 m are proposed. In subsequent articles, it is proposed to consider the effect on the bearing capacity of the pile of the geometric parameters of the crushed stone shell and the lower crushed stone spherical expansion, as well as to carry out a comparative analysis of the numerical results with experimental data obtained in laboratory and field conditions.


Author(s):  
Dean A. Handley ◽  
Lanping A. Sung ◽  
Shu Chien

RBC agglutination by lectins represents an interactive balance between the attractive (bridging) force due to lectin binding on cell surfaces and disaggregating forces, such as membrane stiffness and electrostatic charge repulsion (1). During agglutination, critical geometric parameters of cell contour and intercellular distance reflect the magnitude of these interactive forces and the size of the bridging macromolecule (2). Valid ultrastructural measurements of these geometric parameters from agglutinated RBC's require preservation with minimal cell distortion. As chemical fixation may adversely influence RBC geometric properties (3), we used chemical fixation and cryofixation (rapid freezing followed by freeze-substitution) as a comparative approach to examine these parameters from RBC agglutinated with Ulex I lectin.


2020 ◽  
pp. 51-58
Author(s):  
Aleksandr I. Kazmin ◽  
Pavel A. Fedjunin

One of the most important diagnostic problems multilayer dielectric materials and coatings is the development of methods for quantitative interpretation of the checkout results their electrophysical and geometric parameters. The results of a study of the potential informativeness of the multi-frequency radio wave method of surface electromagnetic waves during reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings are presented. The simulation model is presented that makes it possible to evaluate of the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings. The model takes into account the values of the electrophysical and geometric parameters of the coating, the noise level in the measurement data and the measurement bandwidth. The results of simulation and experimental investigations of reconstruction of the structure of relative permittivitties and thicknesses of single-layer and double-layer dielectric coatings with different thicknesses, with different values of the standard deviation (RMS) of the noise level in the measured attenuation coefficients of the surface slow electromagnetic wave are presented. Coatings based on the following materials were investigated: polymethyl methacrylate, F-4D PTFE, RO3010. The accuracy of reconstruction of the electrophysical parameters of the layers decreases with an increase in the number of evaluated parameters and an increase in the noise level. The accuracy of the estimates of the electrophysical parameters of the layers also decreases with a decrease in their relative permittivity and thickness. The results of experimental studies confirm the adequacy of the developed simulation model. The presented model allows for a specific measuring complex that implements the multi-frequency radio wave method of surface electromagnetic waves, to quantify the potential possibilities for the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric materials and coatings. Experimental investigations and simulation results of a multilayer dielectric coating demonstrated the theoretical capabilities gained relative error permittivity and thickness of the individual layers with relative error not greater than 10 %, with a measurement bandwidth of 1 GHz and RMS of noise level 0,003–0,004.


2013 ◽  
Vol 8 (2) ◽  
pp. 55-66 ◽  
Author(s):  
Georgina Tóth ◽  
Ágota Drégelyi-Kiss ◽  
Béla Palásti-Kovács
Keyword(s):  

2011 ◽  
Vol 0 (4) ◽  
pp. 72
Author(s):  
Grigoriy Golka ◽  
Anton Bilostotskiy ◽  
Igor Subbota ◽  
Valeriy Sukhoveckiy ◽  
Oleg Fadeev

2019 ◽  
Vol 9 (2) ◽  
pp. 46
Author(s):  
PATEL S. ISHA ◽  
MOHAN RAO B. D. V. CHANDRA ◽  
◽  

Sign in / Sign up

Export Citation Format

Share Document