scholarly journals Compressed Sensing of Multi-Channel EEG Signals: Quantitative and Qualitative Evaluation with Speller Paradigm

Author(s):  
Monica Fira
2017 ◽  
Vol 28 (05) ◽  
pp. 1750065
Author(s):  
Valdemar E. Arce-Guevara ◽  
Alfonso Alba-Cadena ◽  
Martín O. Mendez

Quadrature bandpass filters take a real-valued signal and output an analytic signal from which the instantaneous amplitude and phase can be computed. For this reason, they represent a useful tool to extract time-varying, narrow-band information from electrophysiological signals such as electroencephalogram (EEG) or electrocardiogram. One of the defining characteristics of quadrature filters is its null response to negative frequencies. However, when the frequency band of interest is close to 0 Hz, a careless filter design could let through negative frequencies, producing distortions in the amplitude and phase of the output. In this work, three types of quadrature filters (Ideal, Gabor and Sinusoidal) have been evaluated using both artificial and real EEG signals. For the artificial signals, the performance of each filter was measured in terms of the distortion in amplitude and phase, and sensitivity to noise and bandwidth selection. For the real EEG signals, a qualitative evaluation of the dynamics of the synchronization between two EEG channels was performed. The results suggest that, while all filters under study behave similarly under noise, they differ in terms of their sensitivity to bandwidth choice. In this study, the Sinusoidal filter showed clear advantages for the estimation of low-frequency EEG synchronization.


2021 ◽  
Author(s):  
Rouzbeh Zamyadi

In this thesis a novel edge detection technique is developed that employs compressed sensing image reconstruction techniques. The ability of compressed sensing noise reduction is combined with wavelet transforms, acting both as a sparsifying transform as well as an edge detection media. The proposed design was implemented and simulated on a brain phantom. The simulation results were provided for a variety of different sets of variables, and the differences were explained. The results obtained are compared with other edge detection techniques already in use. One important comparison criteria is the visual quality of images; according to which the proposed technique presents improved noise reduction and edge preservation. In addition to qualitative evaluation a method of quantitative measurement based on structural content is also utilized. It is found that the values for such a measure of the proposed method is 1.0755, 1.0174 and 0.5590 for Gaussian, Speckle, and Salt & Pepper noise types respectively. These results indicate that this novel method also improves edge preservation, while the visual quality inspection indicates how much noise has been suppressed.


2021 ◽  
Author(s):  
Rouzbeh Zamyadi

In this thesis a novel edge detection technique is developed that employs compressed sensing image reconstruction techniques. The ability of compressed sensing noise reduction is combined with wavelet transforms, acting both as a sparsifying transform as well as an edge detection media. The proposed design was implemented and simulated on a brain phantom. The simulation results were provided for a variety of different sets of variables, and the differences were explained. The results obtained are compared with other edge detection techniques already in use. One important comparison criteria is the visual quality of images; according to which the proposed technique presents improved noise reduction and edge preservation. In addition to qualitative evaluation a method of quantitative measurement based on structural content is also utilized. It is found that the values for such a measure of the proposed method is 1.0755, 1.0174 and 0.5590 for Gaussian, Speckle, and Salt & Pepper noise types respectively. These results indicate that this novel method also improves edge preservation, while the visual quality inspection indicates how much noise has been suppressed.


2020 ◽  
Vol 6 (6) ◽  
pp. 065024
Author(s):  
Manika Rani Dey ◽  
Arsam Shiraz ◽  
Saeed Sharif ◽  
Jaswinder Lota ◽  
Andreas Demosthenous

Sign in / Sign up

Export Citation Format

Share Document