A Method of Ultrasonic Image Recognition for Thyroid Papillary Carcinoma Based on Deep Convolution Neural Network

2018 ◽  
Vol 16 (5) ◽  
Author(s):  
Yonghua Wang ◽  
Wei Ke ◽  
Pin Wan
Author(s):  
Xiongzhi Ai ◽  
Jiawei Zhuang ◽  
Yonghua Wang ◽  
Pin Wan ◽  
Yu Fu

AbstractUltrasonic image examination is the first choice for the diagnosis of thyroid papillary carcinoma. However, there are some problems in the ultrasonic image of thyroid papillary carcinoma, such as poor definition, tissue overlap and low resolution, which make the ultrasonic image difficult to be diagnosed. Capsule network (CapsNet) can effectively address tissue overlap and other problems. This paper investigates a new network model based on capsule network, which is named as ResCaps network. ResCaps network uses residual modules and enhances the abstract expression of the model. The experimental results reveal that the characteristic classification accuracy of ResCaps3 network model for self-made data set of thyroid papillary carcinoma was $$81.06\%$$ 81.06 % . Furthermore, Fashion-MNIST data set is also tested to show the reliability and validity of ResCaps network model. Notably, the ResCaps network model not only improves the accuracy of CapsNet significantly, but also provides an effective method for the classification of lesion characteristics of thyroid papillary carcinoma ultrasonic images.


2018 ◽  
Vol 48 ◽  
pp. 257-268 ◽  
Author(s):  
Boukaye Boubacar Traore ◽  
Bernard Kamsu-Foguem ◽  
Fana Tangara

Author(s):  
Mehdi Hasnaoui ◽  
Mohamed Masmoudi ◽  
Takwa Belaid ◽  
Khalifa Mighri

Author(s):  
Yiming Guo ◽  
Hui Zhang ◽  
Zhijie Xia ◽  
Chang Dong ◽  
Zhisheng Zhang ◽  
...  

The rolling bearing is the crucial component in the rotating machinery. The degradation process monitoring and remaining useful life prediction of the bearing are necessary for the condition-based maintenance. The commonly used deep learning methods use the raw or processed time domain data as the input. However, the feature extracted by these approaches is insufficient and incomprehensive. To tackle this problem, this paper proposed an improved Deep Convolution Neural Network with the dual-channel input from the time and frequency domain in parallel. The proposed methodology consists of two stages: the incipient failure identification and the degradation process fitting. To verify the effectiveness of the method, the IEEE PHM 2012 dataset is adopted to compare the proposed method and other commonly used approaches. The results show that the improved Deep Convolution Neural Network can effectively describe the degradation process for the rolling bearing.


Sign in / Sign up

Export Citation Format

Share Document