Study and Investigation of Hard Photons Emission in Heavy Ion Collisions

2021 ◽  
Vol 19 (2) ◽  
pp. 61-65
Author(s):  
Taghreed A. Younis ◽  
Hadi J.M. Al-Agealy

This work involves hard photon rate production from quark -gluon plasma QGP interaction in heavy ion collision. Using a quantum chromodynamic model to investigate and calculation of photons rate in 𝑐𝑔 → 𝑠𝑔𝛾 system due to strength coupling, photons rate, temperature of system, flavor number and critical. The photons rate production computed using the perturbative strength models for QGP interactions. The strength coupling was function of temperature of system, flavor number and critical temperature. Its influenced by force with temperature of system, its increased with decreased the temperature and vice versa. The strength coupling has used to examine the confinement and deconfinement of quarks in QGP properties and influence on the photon rate production. In our approach, we calculate the photons rate depending on the strength coupling, photons rate and temperature of system with other factors. The results plotted as a function of the photons energy. The photons rate was decreased with increased temperature and increased with decreased with strength coupling.

2013 ◽  
Vol 28 (27) ◽  
pp. 1330043 ◽  
Author(s):  
HELMUT SATZ

The ultimate aim of high energy heavy ion collisions is to study quark deconfinement and the quark–gluon plasma predicted by quantum chromodynamics. This requires the identification of observables calculable in QCD and measurable in heavy ion collisions. I concentrate on three such phenomena, related to specific features of strongly interacting matter. The observed pattern of hadrosynthesis corresponds to that of an ideal resonance gas in equilibrium at the pseudo-critical temperature determined in QCD. The critical behavior of QCD is encoded in the fluctuation patterns of conserved quantum numbers, which are presently being measured. The temperature of the quark–gluon plasma can be determined by the dissociation patterns of the different quarkonium states, now under study at the LHC for both charmonia and bottomonia.


2015 ◽  
Vol 2015 ◽  
pp. 1-23 ◽  
Author(s):  
Li-Na Gao ◽  
Fu-Hu Liu

We propose a new revised Landau hydrodynamic model to study systematically the pseudorapidity distributions of charged particles produced in heavy ion collisions over an energy range from a few GeV to a few TeV per nucleon pair. The interacting system is divided into three sources, namely, the central, target, and projectile sources, respectively. The large central source is described by the Landau hydrodynamic model and further revised by the contributions of the small target/projectile sources. The modeling results are in agreement with the available experimental data at relativistic heavy ion collider, large hadron collider, and other energies for different centralities. The value of square speed of sound parameter in different collisions has been extracted by us from the widths of rapidity distributions. Our results show that, in heavy ion collisions at energies of the two colliders, the central source undergoes a phase transition from hadronic gas to quark-gluon plasma liquid phase; meanwhile, the target/projectile sources remain in the state of hadronic gas. The present work confirms that the quark-gluon plasma is of liquid type rather than being of a gas type.


2019 ◽  
Vol 64 (8) ◽  
pp. 754
Author(s):  
V. Skalozub

We calculate the induced color charges Q3ind,Q8ind and the effective vertex y−y-gluon generated in a quark-gluon plasma with the A0 condensate because of the color C-parity violation at this background. To imitate the case of heavy-ion collisions, we consider the model of the plasma confined in the narrow infinite plate and derive the classical gluon potentials ¯ ф3 and ¯ ф8 produced by these charges. Two applications – the scattering of photons on a plasma and the conversion of gluon fields in two photons radiated from the plasma – are discussed.


2007 ◽  
Vol 16 (07n08) ◽  
pp. 1930-1936 ◽  
Author(s):  
WEI LIU ◽  
CHE MING KO ◽  
BEN-WEI ZHANG

A gluon or quark jet traversing through a quark-gluon plasma can be converted into a quark or gluon jet through scatterings with thermal partons. Their conversion rates due to two-body elastic and inelastic scattering as well as scatterings involving gluon radiation are evaluated in the lowest order in Quantum Chromodynamics (QCD). Including both energy loss and conversions of quark and gluon jets in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, we find a net conversion of quark jets to gluon jets. This reduces the difference between the nuclear modification factors for quark and gluon jets in central heavy ion collisions and thus enhances the p/π+ and [Formula: see text] ratios at high transverse momentum. Using the larger QCD coupling constant from lattice QCD calculations than that given by the perturbative QCD further enhances the net quark to gluon jet conversion rate, leading to a closer similarity between these ratios at high transverse momentum in central Au + Au collisions at [Formula: see text] and in p + p collisions at same energy as observed in experiments.


Sign in / Sign up

Export Citation Format

Share Document