Hybrid Inception Recurrent Residual Convolutional Neural Network (HIRResCNN) with Harmony Search Optimization (HSO) for Early Breast Cancer Detection System

2021 ◽  
Vol 19 (7) ◽  
pp. 01-24
Author(s):  
K. Sangeetha ◽  
S. Prakash

For women, most common cause of death is Breast tumour and in worldwide, it is the second leading reason for cancer deaths. Due the requirement of breast cancer’s early detection and false diagnosis impact on patients, made researchers to investigate Deep Learning (DL) techniques for mammograms. There are four stages in this proposed HIRResCNN framework, namely, Pre-processing, reduction of dimensionality, segmentation and classification. From images, noises are removed using two filtering algorithms called Median and mean filtering in pre-processing stage. Then canny edge detector is used for detecting edges. Gaussian filtering is used in canny edge detector to smoothen the images. In the next dimensionality reduction stage, attributes are correlated using Principal Component Analysis (PCA) inclusive of related features. So, this huge dataset is minimized and only few variables are used for expressing it. In order to detect the breast cancer accurately, foreground and background subtraction is done in the third stage called segmentation stage. At last, for detecting and classifying breast cancer, a Hybrid Inception Recurrent Residual Convolutional Neural Network (HIRResCNN) is introduced, which integrates Harmony Search Optimization (HSO) to tune bias and weight parameters and classification accuracy is enhanced using HIRResCNN-HSO model. Strength of Recurrent Convolutional Neural Network (RCNN), Residual Network (ResNet) and Inception Network (Inception-v4), are combined in a powerful Deep Convolutional Neural Network (DCNN) model called HIRResCNN. using Mammographic Image Analysis Society (MIAS) dataset, various experiments are conduced and results are compared with other available techniques. Around 92.6% accuracy rate is produced using this proposed HIRResCNN classifier in finding breast cancer.

2012 ◽  
Vol 239-240 ◽  
pp. 1133-1137 ◽  
Author(s):  
Li Ming Guan ◽  
Qian Kai Yang ◽  
Jian Lin ◽  
Yi Fan Wu

A two-dimensional image matching method based on the improved Hausdorff distance and global harmony search optimization is presented in this paper. First, edges are extracted form the original images by the Canny edge detector. Then, a fitness function based on the improved Hausdorff distance is constructed. Finally the global harmony search optimization is adopted to optimize the fitness function. Experiments show that the proposed method is able to locate the object of interest globally and efficiently.


2019 ◽  
Vol 11 (2) ◽  
pp. 43
Author(s):  
Samuel Aji Sena ◽  
Panca Mudjirahardjo ◽  
Sholeh Hadi Pramono

This research presents a breast cancer detection system using deep learning method. Breast cancer detection in a large slide of biopsy image is a hard task because it needs manual observation by a pathologist to find the malignant region. The deep learning model used in this research is made up of multiple layers of the residual convolutional neural network, and instead of using another type of classifier, a multilayer neural network was used as the classifier and stacked together and trained using end-to-end training approach. The system is trained using invasive ductal carcinoma dataset from the Hospital of the University of Pennsylvania and The Cancer Institute of New Jersey. From this dataset, 80% and 20% were randomly sampled and used as training and testing data respectively. Training a neural network on an imbalanced dataset is quite challenging. Weighted loss function was used as the objective function to tackle this problem. We achieve 78.26% and 78.03% for Recall and F1-Score metrics, respectively which are an improvement compared to the previous approach.


10.29007/8sns ◽  
2018 ◽  
Author(s):  
Viranchi N Patel ◽  
Udesang K Jaliya ◽  
Keyur N Brahmbhatt

Advancement of Technology has replaced humans in almost every field with machines. By introducing machines, banking automation has reduced human workload. More care is required to handle currency, which is reduced by automation of banking. The identification of the currency value is hard when currency notes are blurry or damaged. Complex designs are included to enhance security of currency. This makes the task of currency recognition very difficult. To correctly recognize a currency it is very significant to choose the good features and suitable algorithm. In proposed method, Canny Edge Detector is used for segmentation and for classification, NN pattern recognition tool is used which gives 95.6% accuracy.


Author(s):  
SK. MADEENA ◽  
SD.AFZAL AHMED ◽  
P. BABU

We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixel wise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixel wise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and non-vehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixel wise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.


Author(s):  
Pramod Kumar S ◽  
◽  
Narendra T.V ◽  
Vinay N.A ◽  
◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Lahari Tipirneni ◽  
Rizwan Patan

Abstract:: Millions of deaths all over the world are caused by breast cancer every year. It has become the most common type of cancer in women. Early detection will help in better prognosis and increases the chance of survival. Automating the classification using Computer-Aided Diagnosis (CAD) systems can make the diagnosis less prone to errors. Multi class classification and Binary classification of breast cancer is a challenging problem. Convolutional neural network architectures extract specific feature descriptors from images, which cannot represent different types of breast cancer. This leads to false positives in classification, which is undesirable in disease diagnosis. The current paper presents an ensemble Convolutional neural network for multi class classification and Binary classification of breast cancer. The feature descriptors from each network are combined to produce the final classification. In this paper, histopathological images are taken from publicly available BreakHis dataset and classified between 8 classes. The proposed ensemble model can perform better when compared to the methods proposed in the literature. The results showed that the proposed model could be a viable approach for breast cancer classification.


Sign in / Sign up

Export Citation Format

Share Document