scholarly journals The Potential of Cytotoxin and Antiviral in Sargassum polycystum and Sargassum ilicifolium’s Polysaccharides Extract

2020 ◽  
Vol 25 (3) ◽  
pp. 91-96
Author(s):  
Dwi Lestari Widya Ningsih ◽  
Agus Trianto ◽  
Ita Widowati ◽  
Rexie Magdugo ◽  
Anicia Hurtado ◽  
...  

Marine algae known as one producers of bioactive compounds.  This study aims to analyze the cytotoxicity and antiviral activity in Sargassum polycystum and Sargassum ilicifolium tested with Herpes Simplex Virus (HSV).   The polysaccharides extract of algae was used in this study, as sulfated polysaccharides have been reported has bioactivity.  Cytotoxicity either antiviral could be correlated with the sulfate content as well as nature and chemical composition of the polysaccharides. Cytotoxicity and antiviral analysis based upon cell viability. Using the Vero cell / HSV-1 model, cytotoxicity was evaluated by incubating cellular suspensions (3.5×105 cells.mL-1) with various dilutions (concentration from 1 to 500 µg.mL-1, four wells per concentration) of fractions in 96-well plates (72h, 37°C, 5% CO2) in Eagle's MEM containing 8% FCS.  The cells were examined daily under a phase-contrast microscope to determine the minimum concentration of hydrolysate dry matter that induced alterations in cell morphology, including swelling, shrinkage, granularity and detachment. Algae S. illicifolium was found to have the highest cytotoxic content in each solution compared to S. polycystum. Algae S. illicifolium in KOH 4M (cellulose) reached 2,707 µg.ml-1, then HCl pH 2 (fucoidan) was 2,477 µg.ml-1, then CaCl2 2% (fucoidan) was 2,362 µg.ml-1, and in Na2CO3 3% (alginates) was 2,134 µg.ml-1. For antiviral, S. polycystum contained the highest antiviral compounds compared to S. illicifolium with KOH 4M (cellulose) solution was reached 67.02 µg.ml-1.  Then in Na2CO3 3% (alginates) which was 33.25 µg.ml-1, then CaCl2 2% (fucoidan) which was 31.62 µg.ml-1,and HCl pH 2 (fucoidan) was 30.08 µg.ml-1.  After all, the highest bioactivity compounds was found with KOH 4M (cellulose) for  cytotoxicity in S. ilicifolium and antiviral activity in S. polycystum.

2002 ◽  
Vol 46 (6) ◽  
pp. 1766-1772 ◽  
Author(s):  
Ulrich A. K. Betz ◽  
Rüdiger Fischer ◽  
Gerald Kleymann ◽  
Martin Hendrix ◽  
Helga Rübsamen-Waigmann

ABSTRACT BAY 57-1293 belongs to a new class of antiviral compounds and inhibits replication of herpes simplex virus (HSV) type 1 and type 2 in the nanomolar range in vitro by abrogating the enzymatic activity of the viral primase-helicase complex. In various rodent models of HSV infection the antiviral activity of BAY 57-1293 in vivo was found to be superior compared to all compounds currently used to treat HSV infections. The compound shows profound antiviral activity in murine and rat lethal challenge models of disseminated herpes, in a murine zosteriform spread model of cutaneous disease, and in a murine ocular herpes model. It is active in parenteral, oral, and topical formulations. BAY 57-1293 continued to demonstrate efficacy when the onset of treatment was initiated after symptoms of herpetic disease were already apparent.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 196
Author(s):  
Sara Artusi ◽  
Emanuela Ruggiero ◽  
Matteo Nadai ◽  
Beatrice Tosoni ◽  
Rosalba Perrone ◽  
...  

The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that specifically interact with G4s have been shown to inhibit HSV-1 DNA replication. We here investigated the antiviral activity of TMPyP4, a porphyrin known to interact with G4s. The analogue TMPyP2, with lower G4 affinity, was used as control. We showed by biophysical analysis that TMPyP4 interacts with HSV-1 G4s, and inhibits polymerase progression in vitro; in infected cells, it displayed good antiviral activity which, however, was independent of inhibition of virus DNA replication or entry. At low TMPyP4 concentration, the virus released by the cells was almost null, while inside the cell virus amounts were at control levels. TEM analysis showed that virus particles were trapped inside cytoplasmatic vesicles, which could not be ascribed to autophagy, as proven by RT-qPCR, western blot, and immunofluorescence analysis. Our data indicate a unique mechanism of action of TMPyP4 against HSV-1, and suggest the unprecedented involvement of currently unknown G4s in viral or antiviral cellular defense pathways.


1996 ◽  
Vol 40 (10) ◽  
pp. 2327-2331 ◽  
Author(s):  
W J O'Brien ◽  
J L Taylor ◽  
H Ankel ◽  
G Sitenga

Prostaglandin A2 (PGA2) inhibited the replication of herpes simplex virus type 1 in rabbit and human cornea stromal cells at concentrations of 1 to 5 microM while causing significant toxicity at 55 to 150 microM. Despite favorable therapeutic indices in cultured cells, PGA2 was not effective as a therapeutic agent in the treatment of herpetic keratitis in a rabbit model. The sequelae of disease appeared more severe in animals receiving PGA2 than in untreated or placebo-treated controls. The recovery of virus from tissues of latently infected rabbits was not affected by therapy. PGA2 therapy alone induced breakdown of the blood-aqueous barrier, indicating that pharmacologically active concentrations of drug were achieved in the eye. Thus, PGA2 had antiviral activity, but its proinflammatory effects appeared to be more detrimental than beneficial in the treatment of herpetic keratitis.


Virology ◽  
1997 ◽  
Vol 235 (2) ◽  
pp. 398-405 ◽  
Author(s):  
N. Guettari ◽  
L. Loubière ◽  
E. Brisson ◽  
D. Klatzmann

2007 ◽  
Vol 102 (4) ◽  
pp. 469-472 ◽  
Author(s):  
Márcia Cristina Carriel-Gomes ◽  
Jadel Müller Kratz ◽  
Margherita Anna Barracco ◽  
Evelyne Bachére ◽  
Célia Regina Monte Barardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document