prostaglandin a2
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 6)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Vanessa Brisson ◽  
Xavier Mayali ◽  
Benjamin Bowen ◽  
Amber Golini ◽  
Michael Paul Thelen ◽  
...  

Dissolved metabolites mediate algal interactions in aquatic ecosystems, but microalgal exometabolomes remain understudied. We conducted an untargeted metabolomic analysis of non-polar exometabolites exuded from four phylogenetically and ecologically diverse eukaryotic microalgal strains grown in the laboratory: freshwater Chlamydomonas reinhardtii, brackish Desmodesmus sp., marine Phaeodactylum tricornutum, and marine Microchloropsis salina, to identify released metabolites based on relative enrichment in the exometabolomes compared to cell pellet metabolomes. Exudates from the different taxa were distinct, but we did not observe clear phylogenetic patterns. We used feature based molecular networking to explore the identities of these metabolites, revealing several distinct di- and tripeptides secreted by each of the algae, lumichrome, a compound that is known to be involved in plant growth and bacterial quorum sensing, and novel prostaglandin-like compounds. We further investigated the impacts of exogenous additions of eight compounds selected based on exometabolome enrichment on algal growth. Of the these, five (lumichrome, 5’-S-methyl-5'-thioadenosine, 17-phenyl trinor prostaglandin A2, dodecanedioic acid, and aleuritic acid) impacted growth in at least one of the algal cultures.  Two of these (dodecanedioic acid and aleuritic acid) produced contrasting results, increasing growth in some algae and decreasing growth in others. Together, our results reveal new groups of microalgal exometabolites, some of which could alter algal growth when provided exogenously, suggesting potential roles in allelopathy and algal interactions.


2020 ◽  
Author(s):  
Jesse R. Poganik ◽  
Alexandra K. Van Hall-Beauvais ◽  
Marcus J. C. Long ◽  
Michael T. Disare ◽  
Yi Zhao ◽  
...  

AbstractThe key mRNA-binding proteins HuR and AUF1 are reported stress sensors in mammals. Intrigued by recent reports of sensitivity of these proteins to the electrophilic lipid prostaglandin A2 and other redox signals, we here examined their sensing abilities to a prototypical redox-linked lipid-derived electrophile, 4-hydroxynonenal (HNE). Leveraging our T-REX electrophile delivery platform, we found that only HuR, and not AUF1, is a kinetically-privileged sensor of HNE in HEK293T cells, and sensing functions through a specific cysteine, C13. Cells depleted of HuR, upon treatment with HNE, manifest unique alterations in cell viability and Nrf2-transcription-factor-driven antioxidant response (AR), which our recent work shows is regulated by HuR at the Nrf2-mRNA level. Mutagenesis studies showed that C13-specific sensing alone is not sufficient to explain HuR-dependent stress responsivities, further highlighting a complex context-dependent layer of Nrf2/AR regulation through HuR.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 492 ◽  
Author(s):  
Su-Been Lee ◽  
Sangsun Lee ◽  
Ji-Young Park ◽  
Sun-Young Lee ◽  
Ho-Shik Kim

Prostaglandin (PG) A2, one of cyclopentenone PGs, is known to induce activation of apoptosis in various cancer cells. Although PGA2 has been reported to cause activation of apoptosis by altering the expression of apoptosis-related genes, the role of p53, one of the most critical pro-apoptotic genes, on PGA2-induced apoptosis has not been clarified yet. To address this issue, we compared the apoptosis in HCT116 p53 null cells (HCT116 p53-/-) to that in HCT116 cells containing the wild type p53 gene. Cell death induced by PGA2 was associated with phosphorylation of histone H2A variant H2AX (H2AX), activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase 1 in HCT116 cells. Induction of apoptosis in PGA2-treated cells was almost completely prevented by pretreatment with a pan-caspase inhibitor, z-VAD-Fmk, or an inhibitor of protein synthesis, cycloheximide. While PGA2 induced apoptosis in HCT116 cells, phosphorylation of p53 and transcriptional induction of p53-target genes such as p21WAF1, PUMA, BAX, NOXA, and DR5 occurred. Besides, pretreatment of pifithrin-α (PFT-α), a chemical inhibitor of p53’s transcriptional activity, interfered with the induction of apoptosis in PGA2-treated HCT116 cells. Pretreatment of NU7441, a small molecule inhibitor of DNA-activated protein kinase (DNA-PK) suppressed PGA2-induced phosphorylation of p53 and apoptosis as well. Moreover, among target genes of p53, knockdown of DR5 expression by RNA interference, suppressed PGA2-induced apoptosis. In the meanwhile, in HCT116 p53-/- cells, PGA2 induced apoptosis in delayed time points and with less potency. Delayed apoptosis by PGA2 in HCT116 p53-/- cells was also associated with phosphorylation of H2AX but was not inhibited by either PFT-α or NU7441. Collectively, these results suggest the following. PGA2 may induce p53-dependent apoptosis in which DNA-PK activates p53, and DR5, a transcriptional target of p53, plays a pivotal role in HCT116 cells. In contrast to apoptosis in HCT116 cells, PGA2 may induce apoptosis in a fashion of less potency, which is independent of p53 and DNA-PK in HCT116 p53-/- cells


Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 141 ◽  
Author(s):  
Diana Ximena Hurtado ◽  
Fabio A. Castellanos ◽  
Ericsson Coy-Barrera ◽  
Edisson Tello

Prostaglandin A2-AcMe (1) and Prostaglandin A2 (2) were isolated from the octocoral Plexaura homomalla and three semisynthetic derivatives (3–5) were then obtained using a reduction protocol. All compounds were identified through one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) experiments. Additionally, evaluation of in vitro cytotoxic activity against the breast (MDA-MB-213) and lung (A549) cancer cell lines, in combination with enzymatic activity and molecular docking studies with the enzymes p38α-kinase, Src-kinase, and topoisomerase IIα, were carried out for compounds 1–5 in order to explore their potential as inhibitors of cancer-related molecular targets. Results showed that prostaglandin A2 (2) was the most potent compound with an IC50 of 16.46 and 25.20 μg/mL against MDA-MB-213 and A549 cell lines, respectively. In addition, this compound also inhibited p38α-kinase in 49% and Src-kinase in 59% at 2.5 μM, whereas topoisomerase IIα was inhibited in 64% at 10 μM. Enzymatic activity was found to be consistent with molecular docking simulations, since compound 2 also showed the lowest docking scores against the topoisomerase IIα and Src-kinase (−8.7 and −8.9 kcal/mol, respectively). Thus, molecular docking led to establish some insights into the predicted binding modes. Results suggest that prostaglandin 2 can be considered as a potential lead for development inhibitors against some enzymes present in cancer processes.


2019 ◽  
Vol 476 (19) ◽  
pp. 2757-2767 ◽  
Author(s):  
Sowmya P. Lakshmi ◽  
Aravind T. Reddy ◽  
Asoka Banno ◽  
Raju C. Reddy

Abstract Nur77 is a transcription factor belonging to the NR4A subfamily of nuclear hormone receptors. Upon induction, Nur77 modulates the expression of its target genes and controls a variety of biological and pathophysiological processes. Prior research that revealed a structurally atypical ligand-binding domain (LBD) and failed to locate an endogenous ligand had led to a classification of Nur77 as an orphan receptor. However, several more recent studies indicate that small synthetic molecules and unsaturated fatty acids can bind to Nur77. Discovery of additional endogenous ligands will facilitate our understanding of the receptor's functions and regulatory mechanisms. Our data have identified prostaglandin A2 (PGA2), a cyclopentenone prostaglandin (PG), as such a ligand. Cyclopentenone PGs exert their biological effects primarily by forming protein adducts via the characteristic electrophilic β-carbon(s) located in their cyclopentenone rings. Our data show that PGA2 induces Nur77 transcriptional activity by forming a covalent adduct between its endocyclic β-carbon, C9, and Cys566 in the receptor's LBD. The importance of this endocyclic β-carbon was substantiated by the failure of PGs without such electrophilic properties to react with Nur77. Calculated chemical properties and data from reactive molecular dynamic simulations, intrinsic reaction co-ordinate modeling, and covalent molecular docking also corroborate the selectivity of PGA2's C9 β-carbon towards Nur77's Cys. In summary, our molecular, chemical, and structural characterization of the PGA2–Nur77 interaction provides the first evidence that PGA2 is an endogenous Nur77 agonist.


2018 ◽  
Vol 11 (2) ◽  
pp. 1061-1072 ◽  
Author(s):  
M. Kotteswari ◽  
M. R. K. Rao ◽  
Siva Kumar ◽  
K. Prabhu ◽  
R. Lakshmi Sundaram ◽  
...  

Aswagandharishtam is classical medicine for diseases pertaining to nervous system and digestive system prepared by a number of plants and plant parts. The present work is to know the types of biomolecules present in it by GC MS analysis. Aswagandharishtam was procured from standard Ayurvedic outlet and was subjected to Gas Chromatography Mass Spectrometry after due processing. The GC MS analysis of Aswagandharishtam has shown some promising molecules like Prostaglandin A2, Cholesterol, Piperine, Gentamicin a, d-Mannose, Eugenol, Pipradrol among others, which have activities similar to that of Aswagadharistham. This is a preliminary report where some clue about the various types of biomolecules present in Aswagandharishtam was obtained. Further work is on to prove the efficacy of this medicine by other parameters.


2018 ◽  
Vol 38 (1) ◽  
pp. 211-222 ◽  
Author(s):  
Ad Brouwers ◽  
Pieter G. Dingjan ◽  
Ben Dujardin ◽  
Everardus J. van Zoelen ◽  
Paul Lips ◽  
...  

2017 ◽  
Vol 28 (12) ◽  
pp. 1622-1635 ◽  
Author(s):  
Tomomi Ohmura ◽  
Yufeng Tian ◽  
Nicolene Sarich ◽  
Yunbo Ke ◽  
Angelo Meliton ◽  
...  

The role of prostaglandin A2 (PGA2) in modulation of vascular endothelial function is unknown. We investigated effects of PGA2 on pulmonary endothelial cell (EC) permeability and inflammatory activation and identified a receptor mediating these effects. PGA2 enhanced the EC barrier and protected against barrier dysfunction caused by vasoactive peptide thrombin and proinflammatory bacterial wall lipopolysaccharide (LPS). Receptor screening using pharmacological and molecular inhibitory approaches identified EP4 as a novel PGA2 receptor. EP4 mediated barrier-protective effects of PGA2 by activating Rap1/Rac1 GTPase and protein kinase A targets at cell adhesions and cytoskeleton: VE-cadherin, p120-catenin, ZO-1, cortactin, and VASP. PGA2 also suppressed LPS-induced inflammatory signaling by inhibiting the NFκB pathway and expression of EC adhesion molecules ICAM1 and VCAM1. These effects were abolished by pharmacological or molecular inhibition of EP4. In vivo, PGA2 was protective in two distinct models of acute lung injury (ALI): LPS-induced inflammatory injury and two-hit ALI caused by suboptimal mechanical ventilation and injection of thrombin receptor–activating peptide. These protective effects were abolished in mice with endothelial-specific EP4 knockout. The results suggest a novel role for the PGA2–EP4 axis in vascular EC protection that is critical for improvement of pathological states associated with increased vascular leakage and inflammation.


2012 ◽  
Vol 45 (03) ◽  
pp. 213-220 ◽  
Author(s):  
X. Zhu ◽  
R. Walton ◽  
L. Tian ◽  
N. Luo ◽  
S-R. Ho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document