Development of metal sulfide catalysts for electrocatalytic hydrogen evolution reaction in water splitting with pH-universalism

Author(s):  
Xuanhao Mei
RSC Advances ◽  
2021 ◽  
Vol 11 (36) ◽  
pp. 21904-21925
Author(s):  
Neelam Zaman ◽  
Tayyaba Noor ◽  
Naseem Iqbal

Water splitting is an important technology for alternative and sustainable energy storage, and a way for the production of hydrogen without generating pollution.


2021 ◽  
Author(s):  
Zihao Liu ◽  
Shifeng Li ◽  
Fangfang Wang ◽  
Mingxia Li ◽  
Yonghong Ni

FeNi-layered double hydroxide (LDH) is thought to be an excellent electrocatalyst for oxygen evolution reaction (OER), but it always shows extremely poor electrocatalytic activity toward hydrogen evolution reaction (HER) in...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Mingyue Xia ◽  
Yunzhen Wu ◽  
Guanghui Zhang ◽  
Junfeng Gao ◽  
...  

AbstractRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.


RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46286-46296 ◽  
Author(s):  
Nan Zhang ◽  
Junyu Lei ◽  
Jianpeng Xie ◽  
Haiyan Huang ◽  
Ying Yu

A novel 3D hierarchical bifunctional catalytic electrode, MoS2/Ni3S2 nanorod arrays well-aligned on NF exhibited excellent electrocatalytic efficiency for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting.


2021 ◽  
Author(s):  
Hai-Lang Jia ◽  
Jiao Zhao ◽  
Zhiyuan Wang ◽  
Rui-Xin Chen ◽  
Mingyun Guan

Hydrogen production from water-splitting is one of the most promising hydrogen production methods, the preparation of hydrogen evolution reaction (HER) catalyst is very important. Although Pt based materials have the...


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhuofan Gan ◽  
Chengyong Shu ◽  
Chengwei Deng ◽  
Wei Du ◽  
Bo HUANG ◽  
...  

Electrochemical water splitting is promising method to generate pollution-free and sustainable hydrogen energy. However, the specific activity and durability of noble metal catalysts is the main hindrance to hydrogen evolution...


Author(s):  
Hanwen Xu ◽  
Jiawei Zhu ◽  
Pengyan Wang ◽  
Ding Chen ◽  
Chengtian Zhang ◽  
...  

Rational design and construction of high-efficiency bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for large-scale hydrogen production by water splitting. Herein, by a...


2019 ◽  
Vol 55 (87) ◽  
pp. 13156-13159 ◽  
Author(s):  
Kilaparthi Sravan Kumar ◽  
Vishwanath S. Mane ◽  
Ashok Yadav ◽  
Avinash S. Kumbhar ◽  
Ramamoorthy Boomishankar

An efficient photochemical hydrogen evolution reaction in water supported by a 1D-coordination network of octahedral cages is demonstrated with high turnover numbers.


Sign in / Sign up

Export Citation Format

Share Document