Three-dimensional porous NiSe2 foam-based hybrid catalysts for ultra-efficient hydrogen evolution reaction in water splitting

2021 ◽  
Vol 2021 (12) ◽  
pp. 7
Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1595
Author(s):  
Jing Qi ◽  
Tianli Wu ◽  
Mengyao Xu ◽  
Dan Zhou ◽  
Zhubing Xiao

To address the challenge of highly efficient water splitting into H2, successful fabrication of novel porous three-dimensional Ni-doped CoP3 nanowall arrays on carbon cloth was realized, resulting in an effective self-supported electrode for the electrocatalytic hydrogen-evolution reaction. The synthesized samples exhibit rough, curly, and porous structures, which are beneficial for gaseous transfer and diffusion during the electrocatalytic process. As expected, the obtained Ni-doped CoP3 nanowall arrays with a doping concentration of 7% exhibit the promoted electrocatalytic activity. The achieved overpotentials of 176 mV for the hydrogen-evolution reaction afford a current density of 100 mA cm−2, which indicates that electrocatalytic performance can be dramatically enhanced via Ni doping. The Ni-doped CoP3 electrocatalysts with increasing catalytic activity should have significant potential in the field of water splitting into H2. This study also opens an avenue for further enhancement of electrocatalytic performance through tuning of electronic structure and d-band center by doping.


RSC Advances ◽  
2021 ◽  
Vol 11 (36) ◽  
pp. 21904-21925
Author(s):  
Neelam Zaman ◽  
Tayyaba Noor ◽  
Naseem Iqbal

Water splitting is an important technology for alternative and sustainable energy storage, and a way for the production of hydrogen without generating pollution.


2014 ◽  
Vol 24 (39) ◽  
pp. 6123-6129 ◽  
Author(s):  
Xiumei Geng ◽  
Wei Wu ◽  
Ning Li ◽  
Weiwei Sun ◽  
Johnathan Armstrong ◽  
...  

2021 ◽  
Author(s):  
Zihao Liu ◽  
Shifeng Li ◽  
Fangfang Wang ◽  
Mingxia Li ◽  
Yonghong Ni

FeNi-layered double hydroxide (LDH) is thought to be an excellent electrocatalyst for oxygen evolution reaction (OER), but it always shows extremely poor electrocatalytic activity toward hydrogen evolution reaction (HER) in...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Mingyue Xia ◽  
Yunzhen Wu ◽  
Guanghui Zhang ◽  
Junfeng Gao ◽  
...  

AbstractRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.


RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46286-46296 ◽  
Author(s):  
Nan Zhang ◽  
Junyu Lei ◽  
Jianpeng Xie ◽  
Haiyan Huang ◽  
Ying Yu

A novel 3D hierarchical bifunctional catalytic electrode, MoS2/Ni3S2 nanorod arrays well-aligned on NF exhibited excellent electrocatalytic efficiency for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 929 ◽  
Author(s):  
Sajjad Hussain ◽  
Kamran Akbar ◽  
Dhanasekaran Vikraman ◽  
Rana Afzal ◽  
Wooseok Song ◽  
...  

To find an effective alternative to scarce, high-cost noble platinum (Pt) electrocatalyst for hydrogen evolution reaction (HER), researchers are pursuing inexpensive and highly efficient materials as an electrocatalyst for large scale practical application. Layered transition metal dichalcogenides (TMDCs) are promising candidates for durable HER catalysts due to their cost-effective, highly active edges and Earth-abundant elements to replace Pt electrocatalysts. Herein, we design an active, stable earth-abundant TMDCs based catalyst, WS(1−x)Sex nanoparticles-decorated onto a 3D porous graphene/Ni foam. The WS(1−x)Sex/graphene/NF catalyst exhibits fast hydrogen evolution kinetics with a moderate overpotential of ~−93 mV to drive a current density of 10 mA cm−2, a small Tafel slope of ~51 mV dec−1, and a long cycling lifespan more than 20 h in 0.5 M sulfuric acid, which is much better than WS2/NF and WS2/graphene/NF catalysts. Our outcomes enabled a way to utilize the TMDCs decorated graphene and precious-metal-free electrocatalyst as mechanically robust and electrically conductive catalyst materials.


Sign in / Sign up

Export Citation Format

Share Document