scholarly journals Gene action for grain protein content in durum wheat

2021 ◽  
Vol 117 (2) ◽  
pp. 1
Author(s):  
Rangel DRAGOV

The aim of this study was to determine the gene action and combining ability of durum wheat for grain protein content. During the three year period a diallel cross was carried out with five modern parents of durum wheat – ‘Victoria’, ‘Deni’, ‘Superdur’, ‘Progres’ and ‘Predel’. Ten hybrid combinations and the parents were grown in the experimental field of the Field Crops Institute, Chirpan. The experiment was performed by the randomize block method design in three replications. It was found that in the inheritance of grain protein content dominance and overdominance in positive and negative directions were observed. Statistical processing of the results showed that both additive and non-additive genetic effects have influenced on inheritance. Non-additive gene effects (SCA) had a greater role in inheritance. This suggests that an effective selection for this trait could begin in later generations. The combining ability analysis has identified two good general combinators (Predel and Superdur varieties) that could be used as donors to increase the values of the trait protein content in grain. Several crosses showing positive and significant SCA effects have also been identified, suitable for achieving reliable transgressive genotypes.

Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 186
Author(s):  
Fortunato ◽  
Nigro ◽  
Paradiso ◽  
Cucci ◽  
Lacolla ◽  
...  

Soil nitrogen abundance, as well as nitrogen use efficiency (NUE), significantly affect the crop yield and grain protein content (GPC). Depending on the genotype, a negative correlation between the yield and GPC can occur. The aim of the study was to assess the agronomic performance, and to explore physiological pathways for the efficient use of N fertilizer for two durum wheat cultivars, “Aureo” and “Vespucci”. After fertilization, the nitrogen content and values of some of the agronomic parameters and yield-related traits increased in both cultivars; nevertheless, a simultaneous rise in both the yield and GPC occurred only in Aureo. The biochemical parameters, analyzed at tillering, confirm the genotypic specificity of nitrogen use. In Vespucci’s roots, the nitrogen supply did not affect the nitrate reductase (NR), but greatly increased the amino acids and proteins, suggesting that ammonium is preferentially assimilated. In Aureo, nitrate is in part assimilated by the roots, as suggested by the ammonium increase and NR enhancement. In the leaves of both cultivars, organic nitrogen significantly increased after fertilization; however, the rise in amino acids, as well as in NR activity, was higher in Aureo than in Vespucci. These results indicate that the different nitrogen use, and in particular the diverse NR behavior, at tillering, are in part responsible of the cultivar differences in grain yield and GPC.


2016 ◽  
Vol 7 ◽  
Author(s):  
Domenica Nigro ◽  
Stefania Fortunato ◽  
Stefania L. Giove ◽  
Annalisa Paradiso ◽  
Yong Q. Gu ◽  
...  

2013 ◽  
Vol 13 (58) ◽  
pp. 7693-7710
Author(s):  
Haile D ◽  
◽  
R Nigussie-Dechassa ◽  
W Abdo ◽  
F Girma ◽  
...  

The use of optimum seeding rate for the genotype may enhance productivity and grain protein content of durum wheat. Therefore, an experiment was conducted at two locations in south-eastern Ethiopia during the main cropping season of 2008 with the objective of elucidating the effects of seeding rate and genotype on agronomic performance and grain protein content of the crop. The experiment consisted of factorial arrangements of four improved durum wheat genotypes and five seeding rates, which were laid out as a randomized complete block design with three replicates. Seeding rates significantly influenced agronomic performances including number of fertile spikes m-2, plant height, number of seeds spike-1, and grain yield. Number of fertile spikes m-2 was increased proportionally with the seeding rate and the highest number (382 spikes m-2) was recorded in the highest seeding rate of 200kg ha-1. Inversely, the highest number of kernels spike-1 (29.8) was at the seeding rate of 100 kg ha-1. The highest grain yield (4341 kg ha-1) was obtained in response to seeding rate of 175 kg ha-1, which was in statistical parity with the yield obtained at the seeding rate of 150 kg ha-1. However, grain protein content was not influenced by the seeding rates. There were significant (P ≤ 0.05) variations among the genotypes for all the agronomic traits measured. The largest number of fertile spikes m-2 was recorded for the genotypes Oda (360 spikes m-2) and Bakalcha (345 spikes m-2). Genotype Illani produced the longest spike (6.9 cm). Oda and Illani produced the highest numbers of seeds spike-1, 38.8 and 36.9, respectively. The number of fertile spikes m-2, number of seeds spike-2 and kernels weight significantly contributed grain yield. The genotypes had exhibited less variation for grain protein content. Except for grain yield and harvest index, seeding rate x genotype interaction had no significant effect on other agronomic traits. Highest grain yields of 4938 kg ha-1 and 4774 kg ha1 were obtained from genotypes Ejersa and Bakalcha when sown at the seeding rate of 150 kg ha-1 and 175 kg ha-1, respectively. Grain protein response was significantly influenced by the interaction effect in which genotype Oda had the highest (12.9%) and lowest (10.5%) protein contents at the highest (200 kg ha-1) and lowest (100 kg ha-1) seeding rates, respectively.


Planta ◽  
2019 ◽  
Vol 249 (4) ◽  
pp. 1157-1175 ◽  
Author(s):  
D. Nigro ◽  
A. Gadaleta ◽  
G. Mangini ◽  
P. Colasuonno ◽  
I. Marcotuli ◽  
...  

2011 ◽  
Vol 11 (4) ◽  
pp. 665-670 ◽  
Author(s):  
Agata Gadaleta ◽  
Domenica Nigro ◽  
Angelica Giancaspro ◽  
Antonio Blanco

2006 ◽  
Vol 112 (7) ◽  
pp. 1195-1204 ◽  
Author(s):  
A. Blanco ◽  
R. Simeone ◽  
A. Gadaleta

Sign in / Sign up

Export Citation Format

Share Document