scholarly journals Association between muscle hydration measures acquired using bioelectrical impedance spectroscopy and magnetic resonance imaging in healthy and hemodialysis population

2015 ◽  
Vol 3 (1) ◽  
pp. e12219 ◽  
Author(s):  
Anuradha Sawant ◽  
Andrew A. House ◽  
Bert M. Chesworth ◽  
Denise M. Connelly ◽  
Robert Lindsay ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Anuradha Sawant ◽  
Andrew A. House ◽  
Bert M. Chesworth ◽  
Joseph Gati ◽  
Robert Lindsay ◽  
...  

Purpose. The purpose of this study was to investigate the test-retest reliability, relative variability, and agreement between calf bioelectrical impedance-spectroscopy (cBIS) acquired extracellular fluid (ECF), intracellular fluid (ICF), total water and the ratio of ECF : ICF, magnetic-resonance-imaging (MRI) acquired transverse relaxation times (T2), and apparent diffusion coefficient (ADC) of calf muscles of the same segment in healthy individuals. Methods. Muscle hydration measures were collected in 32 healthy individuals on two occasions and analyzed by a single rater. On both occasions, MRI measures were collected from tibialis anterior (TA), medial (MG), and lateral gastrocnemius (LG) and soleus muscles following the cBIS data acquired using XiTRON Hydra 4200 BIS device. The intraclass correlation coefficients (ICC2,1), coefficient of variation (CV), and agreement between MRI and cBIS data were also calculated. Results. ICC2,1 values for cBIS, T2, and ADC ranged from 0.56 to 0.92, 0.96 to 0.99, and 0.05 to 0.56, respectively. Relative variability between measures (CV) ranged from 14.6 to 25.6% for the cBIS data and 4.2 to 10.0% for the MRI-acquired data. The ratio of ECF : ICF could significantly predict T2 of TA and soleus muscles. Conclusion. MRI-acquired measures of T2 had the highest test-retest reliability of muscle hydration with the least error and variation on repeated testing. Hence, T2 of a muscle is the most reliable and stable outcome measure for evaluating individual muscle hydration.


1999 ◽  
Vol 96 (6) ◽  
pp. 647-657 ◽  
Author(s):  
N. J. FULLER ◽  
C. R. HARDINGHAM ◽  
M. GRAVES ◽  
N. SCREATON ◽  
A. K. DIXON ◽  
...  

Magnetic resonance imaging (MRI) was used to evaluate and compare with anthropometry a fundamental bioelectrical impedance analysis (BIA) method for predicting muscle and adipose tissue composition in the lower limb. Healthy volunteers (eight men and eight women), aged 41 to 62 years, with mean (S.D.) body mass indices of 28.6 (5.4) kg/m2 and 25.1 (5.4) kg/m2 respectively, were subjected to MRI leg scans, from which 20-cm sections of thigh and 10-cm sections of lower leg (calf) were analysed for muscle and adipose tissue content, using specifically developed software. Muscle and adipose tissue were also predicted from anthropometric measurements of circumferences and skinfold thicknesses, and by use of fundamental BIA equations involving section impedance at 50 kHz and tissue-specific resistivities. Anthropometric assessments of circumferences, cross-sectional areas and volumes for total constituent tissues matched closely MRI estimates. Muscle volume was substantially overestimated (bias: thigh, -40%; calf, -18%) and adipose tissue underestimated (bias: thigh, 43%; calf, 8%) by anthropometry, in contrast to generally better predictions by the fundamental BIA approach for muscle (bias: thigh, -12%; calf, 5%) and adipose tissue (bias: thigh, 17%; calf, -28%). However, both methods demonstrated considerable individual variability (95% limits of agreement 20–77%). In general, there was similar reproducibility for anthropometric and fundamental BIA methods in the thigh (inter-observer residual coefficient of variation for muscle 3.5% versus 3.8%), but the latter was better in the calf (inter-observer residual coefficient of variation for muscle 8.2% versus 4.5%). This study suggests that the fundamental BIA method has advantages over anthropometry for measuring lower limb tissue composition in healthy individuals.


Obesity ◽  
2020 ◽  
Vol 28 (2) ◽  
pp. 277-283
Author(s):  
Oliver Chaudry ◽  
Alexandra Grimm ◽  
Andreas Friedberger ◽  
Wolfgang Kemmler ◽  
Michael Uder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document