scholarly journals Basal late sodium current is a significant contributor to the duration of action potential of guinea pig ventricular myocytes

2017 ◽  
Vol 5 (10) ◽  
pp. e13295 ◽  
Author(s):  
Yejia Song ◽  
Luiz Belardinelli
2012 ◽  
Vol 102 (3) ◽  
pp. 541a
Author(s):  
Balazs Horvath ◽  
Zhong Jian ◽  
Shaden Khabbaz ◽  
Tamas Banyasz ◽  
Leighton T. Izu ◽  
...  

2018 ◽  
Vol 125 (4) ◽  
pp. 1329-1338
Author(s):  
Yejia Song ◽  
Luiz Belardinelli

Aging hearts have prolonged QT interval and are vulnerable to oxidative stress. Because the QT interval indirectly reflects the action potential duration (APD), we examined the hypotheses that 1) the APD of ventricular myocytes increases with age; 2) the age-related prolongation of APD is due to an enhancement of basal late Na+ current ( INaL); and 3) inhibition of INaL may protect aging hearts from arrhythmogenic effects of hydrogen peroxide (H2O2). Experiments were performed on ventricular myocytes isolated from (young) 1-mo- and (old) 1-yr-old guinea pigs (GPs). The APD of myocytes from old GPs was significantly longer than that from young GPs and was shortened by the INaL inhibitors GS967 and tetrodotoxin. The magnitude of INaL was significantly larger in myocytes from old than from young GPs. The CaMKII inhibitors KN-93 and AIP and the NaV1.5-channel blocker methanethiosulfonate ethylammonium blocked the INaL. There were no significant differences between myocytes from young and old GPs in L-type Ca2+ current and the rapidly and slowly activating delayed rectifier K+ currents, although the inward rectifier K+ current was slightly decreased in myocytes from old GPs. H2O2 induced more early afterdepolarizations in myocytes from old than from young GPs. The effect of H2O2 was attenuated by GS967. The results suggest that 1) the APD of myocytes from old GPs is prolonged, 2) a CaMKII-mediated increase in NaV1.5-channel INaL is responsible for the prolongation of APD, and 3) inhibition of INaL may be beneficial for maintaining electrical stability under oxidative stress in myocytes of old GPs. NEW & NOTEWORTHY The action potential duration is significantly longer in ventricular myocytes from old than from young guinea pigs, which may explain, at the cellular level, the increase in QT interval with age. A CaMKII-mediated enhancement of NaV1.5-channel late current is responsible for the age-related prolongation of action potential duration. The enhanced basal late sodium current may predispose cardiac myocytes of old animals to oxidative stress and arrhythmogenesis.


2014 ◽  
Vol 124 (3) ◽  
pp. 365-373 ◽  
Author(s):  
Xiao-Jing Wang ◽  
Lei-Lei Wang ◽  
Chen Fu ◽  
Pei-Hua Zhang ◽  
Ying Wu ◽  
...  

2014 ◽  
Vol 306 (3) ◽  
pp. H455-H461 ◽  
Author(s):  
Antao Luo ◽  
Jihua Ma ◽  
Yejia Song ◽  
Chunping Qian ◽  
Ying Wu ◽  
...  

An increase of cardiac late sodium current ( INa.L) is arrhythmogenic in atrial and ventricular tissues, but the densities of INa.L and thus the potential relative contributions of this current to sodium ion (Na+) influx and arrhythmogenesis in atria and ventricles are unclear. In this study, whole-cell and cell-attached patch-clamp techniques were used to measure INa.L in rabbit left atrial and ventricular myocytes under identical conditions. The density of INa.L was 67% greater in left atrial (0.50 ± 0.09 pA/pF, n = 20) than in left ventricular cells (0.30 ± 0.07 pA/pF, n = 27, P < 0.01) when elicited by step pulses from −120 to −20 mV at a rate of 0.2 Hz. Similar results were obtained using step pulses from −90 to −20 mV. Anemone toxin II (ATX II) increased INa.L with an EC50 value of 14 ± 2 nM and a Hill slope of 1.4 ± 0.1 ( n = 9) in atrial myocytes and with an EC50 of 21 ± 5 nM and a Hill slope of 1.2 ± 0.1 ( n = 12) in ventricular myocytes. Na+ channel open probability (but not mean open time) was greater in atrial than in ventricular cells in the absence and presence of ATX II. The INa.L inhibitor ranolazine (3, 6, and 9 μM) reduced INa.L more in atrial than ventricular myocytes in the presence of 40 nM ATX II. In summary, rabbit left atrial myocytes have a greater density of INa.L and higher sensitivities to ATX II and ranolazine than rabbit left ventricular myocytes.


1999 ◽  
Vol 277 (2) ◽  
pp. H826-H833 ◽  
Author(s):  
Seiko Tanabe ◽  
Toshio Hata ◽  
Masayasu Hiraoka

To explore a possible ionic basis for the prolonged Q-T interval in women compared with that in men, we investigated the electrophysiological effects of estrogen in isolated guinea pig ventricular myocytes. Action potentials and membrane currents were recorded using the whole cell configuration of the patch-clamp technique. Application of 17β-estradiol (10–30 μM) significantly prolonged the action potential duration (APD) at 20% (APD20) and 90% repolarization (APD90) at stimulation rates of 0.1–2.0 Hz. In the presence of 30 μM 17β-estradiol, APD20 and APD90 at 0.1 Hz were prolonged by 46.2 ± 17.1 and 63.4 ± 11.7% of the control ( n = 5), respectively. In the presence of 30 μM 17β-estradiol the peak inward Ca2+ current ( I CaL) was decreased to 80.1 ± 2.5% of the control ( n = 4) without a shift in its voltage dependence. Application of 30 μM 17β-estradiol decreased the rapidly activating component of the delayed outward K+ current ( I Kr) to 63.4 ± 8% and the slowly activating component ( I Ks) to 65.8 ± 8.7% with respect to the control; the inward rectifier K+ current was barely affected. The results suggest that 17β-estradiol prolonged APD mainly by inhibiting the I Kcomponents I Krand I Ks.


1995 ◽  
Vol 268 (6) ◽  
pp. H2321-H2328 ◽  
Author(s):  
S. Zhang ◽  
T. Sawanobori ◽  
H. Adaniya ◽  
Y. Hirano ◽  
M. Hiraoka

Effects of extracellular magnesium (Mg2+) on action potential duration (APD) and underlying membrane currents in guinea pig ventricular myocytes were studied by using the whole cell patch-clamp method. Increasing external Mg2+ concentration [Mg2+]o) from 0.5 to 3 mM produced a prolongation of APD at 90% repolarization (APD90), whereas 5 and 10 mM Mg2+ shortened it. [Mg2+]o, at 3 mM or higher, suppressed the delayed outward K+ current and the inward rectifier K+ current. Increases in [Mg2+]o depressed the peak amplitude and delayed the decay time course of the Ca2+ current (ICa), the latter effect is probably due to the decrease in Ca(2+)-induced inactivation. Thus 3 mM Mg2+ suppressed the peak ICa but increased the late ICa amplitude at the end of a 200-ms depolarization pulse, whereas 10 mM Mg2+ suppressed both components. Application of 10 mM Mg2+ shifted the voltage-dependent activation and inactivation by approximately 10 mV to more positive voltage due to screening the membrane surface charges. Application of manganese (1-5 mM) also caused dual effects on APD90, similar to those of Mg2+, and suppressed the peak ICa with slowed decay. These results suggest that the dual effects of Mg2+ on APD in guinea pig ventricular myocytes can be, at least in part, explained by its action on ICa with slowed decay time course in addition to suppressive effects on K+ currents.


Author(s):  
Ryoichi Sato ◽  
Ichiro Hisatome ◽  
Yasunori Tanaka ◽  
Norito Sasaki ◽  
Hiroshi Kotake ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document