Effects of estrogen on action potential and membrane currents in guinea pig ventricular myocytes

1999 ◽  
Vol 277 (2) ◽  
pp. H826-H833 ◽  
Author(s):  
Seiko Tanabe ◽  
Toshio Hata ◽  
Masayasu Hiraoka

To explore a possible ionic basis for the prolonged Q-T interval in women compared with that in men, we investigated the electrophysiological effects of estrogen in isolated guinea pig ventricular myocytes. Action potentials and membrane currents were recorded using the whole cell configuration of the patch-clamp technique. Application of 17β-estradiol (10–30 μM) significantly prolonged the action potential duration (APD) at 20% (APD20) and 90% repolarization (APD90) at stimulation rates of 0.1–2.0 Hz. In the presence of 30 μM 17β-estradiol, APD20 and APD90 at 0.1 Hz were prolonged by 46.2 ± 17.1 and 63.4 ± 11.7% of the control ( n = 5), respectively. In the presence of 30 μM 17β-estradiol the peak inward Ca2+ current ( I CaL) was decreased to 80.1 ± 2.5% of the control ( n = 4) without a shift in its voltage dependence. Application of 30 μM 17β-estradiol decreased the rapidly activating component of the delayed outward K+ current ( I Kr) to 63.4 ± 8% and the slowly activating component ( I Ks) to 65.8 ± 8.7% with respect to the control; the inward rectifier K+ current was barely affected. The results suggest that 17β-estradiol prolonged APD mainly by inhibiting the I Kcomponents I Krand I Ks.

1994 ◽  
Vol 72 (4) ◽  
pp. 382-393 ◽  
Author(s):  
Qi-Ying Liu ◽  
Mario Vassalle

The effects of some components of ischemia on the oscillatory (Vos) and nonoscillatory (Vex) potentials and respective currents (Ios and Iex), as well as their mechanisms, were studied in guinea pig isolated ventricular myocytes by means of a single-microelectrode, discontinuous voltage clamp method. Repetitive activations induced not only Vos and Ios, but also Vex and Iex. A small decrease in resting potential caused an immediate increase in Vos followed by a gradual increase due to the longer action potential. Immediate and gradual increases in Ios also occurred during voltage clamp steps. A small depolarization increased Vos and Vex, and facilitated the induction of spontaneous discharge by fast drive. At Vh where INa is inactivated, depolarizing steps induced larger Ios and Iex, indicating the importance of the Na-independent Ca loading. High [K]odecreased the resting potential, but also Vos, Vex, Ios, Iex, and ICa. In high [K]o, depolarization still increased Vos and Vex. Norepinephrine (NE) enhanced Vos and Vex, and also Ios and Iex, during voltage clamp steps. High [K]o antagonized NE effects, and NE those of high [K]o. In conclusion, on depolarization, Vos and Ios immediately increase through a voltage-dependent mechanism; and then Vos and Ios gradually increase, apparently through an increased Ca load related to the longer action potentials and the Na–Ca exchange. The depolarization induced by Vex may contribute to increase Vos size. Vos and Vex are similarly influenced by different procedures that modify Ca load. The arrhythmogenic events are enhanced by the simultaneous presence of depolarization, faster rate, or NE. Instead, high [K]o decreases Vos and Vex by decreasing ICa and opposes the effects of NE. The voltage clamp results show that potentiation and antagonism between different components of ischemia are due primarily to changes in Ca loading and not to changes in action potential configuration.Key words: ischemia, arrhythmias, oscillatory and nonoscillatory potentials and currents, norepinephrine, potassium.


2013 ◽  
Vol 91 (8) ◽  
pp. 586-592 ◽  
Author(s):  
Claudia Corici ◽  
Zsófia Kohajda ◽  
Attila Kristóf ◽  
András Horváth ◽  
László Virág ◽  
...  

Activators of the slow delayed rectifier K+ current (IKs) have been suggested as promising tools for suppressing ventricular arrhythmias due to prolongation of repolarization. Recently, L-364,373 (R-L3) was nominated to activate IKs in myocytes from several species; however, in some studies, it failed to activate IKs. One later study suggested opposite modulating effects from the R-L3 enantiomers as a possible explanation for this discrepancy. Therefore, we analyzed the effect of the RL-3 enantiomers on IKs in ventricular mammalian myocytes, by applying standard microelectrode and whole-cell patch-clamp techniques at 37 °C. We synthesized 2 substances, ZS_1270B (right) and ZS_1271B (left), the 2 enantiomers of R-L3. In rabbit myocytes, ZS_1270B enhanced the IKs tail current by approximately 30%, whereas ZS_1271B reduced IKs tails by 45%. In guinea pig right ventricular preparations, ZS_1270B shortened APD90 (action potential duration measured at 90% repolarization) by 12%, whereas ZS_1271B lengthened it by approximately 15%. We concluded that R-L3 enantiomers in the same concentration range indeed have opposite modulating effects on IKs, which may explain why the racemic drug R-L3 previously failed to activate IKs. ZS_1270B is a potent IKs activator, therefore, this substance is appropriate to test whether IKs activators are ideal tools to suppress ventricular arrhythmias originating from prolongation of action potentials.


1990 ◽  
Vol 258 (4) ◽  
pp. H931-H938 ◽  
Author(s):  
J. Meszaros ◽  
A. J. Pappano

In isolated guinea pig ventricular myocytes, L-palmitoylcarnitine (L-PC) produced concentration- and time-dependent changes of resting potential (RP) and action potential duration at 50% repolarization (APD50). At 10(-8) to 10(-6) M, L-PC increased APD50 without changing RP. At 10(-5) M, the amphiphile initially increased (0-10 min) and eventually decreased (greater than 10 min) APD50; the membrane depolarized when APD50 decreased. Additionally, transient depolarizations (TDs) were consistently induced in 10(-5) M L-PC within 10 min, and TD amplitude progressively increased with continued exposure to L-PC. The TDs induced in L-PC were augmented by membrane depolarization, elevated extracellular Ca2+ concentration ([Ca2+]o), and increased number of stimuli. Elevated [Ca2+]o or neuraminidase treatment also allowed TDs. In neuraminidase, the changes of RP, APD50, and TD amplitude were qualitatively similar to those seen with L-PC. These results are consistent with the hypothesis that 10(-5) M L-PC causes intracellular Ca2+ overload. The blockade of L-PC and neuraminidase-induced TDs by ryanodine is consistent with the intracellular Ca2+ overload hypothesis.


1993 ◽  
Vol 264 (2) ◽  
pp. H454-H463 ◽  
Author(s):  
A. Sunami ◽  
T. Sasano ◽  
A. Matsunaga ◽  
Z. Fan ◽  
T. Swanobori ◽  
...  

Modification of single Na+ channels by the alkaloid neurotoxin veratridine was investigated in guinea pig ventricular myocytes using the cell-attached configuration of the patch-clamp technique. Pipette application of veratridine (50 microM) induced long-lasting openings with two different single-channel conductances of 7.6 and 3.0 pS, in addition to normal type of short openings with a single-channel conductance of 16 pS. The veratridine-modified high- and low-conductance channels appeared commonly, and they could coexist with the normal one in the same patch. The open-time distributions for the high- and low-conductance channels could be fitted by a single exponential. The mean open time for the high- and low-conductance events ranged between 19.1 ms at -120 mV and 86.0 ms at -10 mV and between 4.5 ms at -120 mV and 16.2 ms at -10 mV, respectively. The closed-time distributions for the two conductance channels consisted of at least two components, and their values and voltage dependence were similar. External Ca2+ block resulted in an apparent reduction of unitary current amplitudes with a similar voltage dependence and affinity for Ca2+ in the high- and low-conductance channels. However, the low-conductance channel was more resistant to tetrodotoxin than the high one. The probability of simultaneous occurrence of the high and low events was equal to the product of the probabilities of occurrence of the high event times that of the low event. Furthermore, we observed modified channel openings after a normal opening for the two conductance channels and a modified one turning into a normal one for the high-conductance channel. It is concluded that veratridine induces the two different types of modified Na+ channels in cardiac myocytes and these are correlated with normal openings.


Sign in / Sign up

Export Citation Format

Share Document