scholarly journals A collagen extraction and deuterium oxide stable isotope tracer method for the quantification of bone collagen synthesis rates in vivo

2021 ◽  
Vol 9 (10) ◽  
Author(s):  
Rita Civil ◽  
Matthew S. Brook ◽  
Kirsty J. Elliott‐Sale ◽  
Lívia Santos ◽  
Ian Varley ◽  
...  
2018 ◽  
Vol 9 ◽  
Author(s):  
Norelle C. Wildburger ◽  
Frank Gyngard ◽  
Christelle Guillermier ◽  
Bruce W. Patterson ◽  
Donald Elbert ◽  
...  

2021 ◽  
Author(s):  
Duhyeong Hwang ◽  
Natasha Vinod ◽  
Sarah L. Skoczen ◽  
Jacob D. Ramsey ◽  
Kelsie S. Snapp ◽  
...  

AbstractThe in vivo fate of nanoformulated drugs is governed by the physicochemical properties of the drug and the functionality of nanocarriers. Nanoformulations such as polymeric micelles, which physically encapsulate poorly soluble drugs, release their payload into the bloodstream during systemic circulation. This results in three distinct fractions of the drug-nanomedicine: encapsulated, protein-bound, and free drug. Having a thorough understanding of the pharmacokinetic (PK) profiles of each fraction is essential to elucidate mechanisms of nanomedicine-driven changes in drug exposure and PK/PD relationships pharmacodynamic activity. Here, we present a comprehensive preclinical assessment of the poly(2-oxazoline)-based polymeric micelle of paclitaxel (PTX) (POXOL hl-PM), including bioequivalence comparison to the clinically approved paclitaxel nanomedicine, Abraxane®. Physicochemical characterization and toxicity analysis of POXOL hl-PM was conducted using standardized protocols by the Nanotechnology Characterization Laboratory (NCL). The bioequivalence of POXOL hl-PM to Abraxane® was evaluated in rats and rhesus macaques using the NCL’s established stable isotope tracer ultrafiltration assay (SITUA) to delineate the plasma PK of each PTX fraction. The SITUA study revealed that POXOL hl-PM and Abraxane® had comparable PK profiles not only for total PTX but also for the distinct drug fractions, suggesting bioequivalence in given animal models. The comprehensive preclinical evaluation of POXOL hl-PM in this study showcases a series of widely-applicable standardized studies by NCL for assessing nanoformulations prior to clinical investigation.GRAPHICAL ABSTRACT


2002 ◽  
Vol 30 (2) ◽  
pp. 61-65 ◽  
Author(s):  
J. Babraj ◽  
D.J. Cuthbertson ◽  
P. Rickhuss ◽  
W. Meier-Augenstein ◽  
K. Smith ◽  
...  

Type I collagen is the major bone protein. Little is known quantitatively about human bone collagen synthesis in vivo, despite its importance for the understanding of bone formation and turnover. Our aim was to develop a method that could be used for the physiological and pathophysiological investigation of human bone collagen synthesis. We have carried out preliminary studies in patients undergoing hip replacement and in pigs to validate the use of the flooding dose method using 13C- or 15N-labelled proline and we have now refined our techniques to allow them to be used in a normal clinical or physiological setting. The results show that the application of a flooding dose causes bone free-proline labelling to equilibrate with that of blood in pigs and human beings, so that only 150 mg of bone will provide enough sample to prepare and measure the labelling of three fractions of bone collagen (dissolved in NaCl, acetic acid and pepsin/acetic acid) which have the same relative labelling (1.0:0.43:0.1) as measured by GC-combustion-isotope ratio MS. The rates of incorporation were substantially faster than in skeletal muscle samples taken at the same time. The results suggest that different fractions of human bone collagen turnover at markedly higher rates than had been previously considered. This approach should allow us to discover how growth and development, food, activity and drugs affect bone collagen turnover and to measure the effects on it of ageing and bone disease.


2020 ◽  
Vol 9 (1) ◽  
pp. 110 ◽  
Author(s):  
Il-Young Kim ◽  
Sanghee Park ◽  
Jiwoong Jang ◽  
Robert R. Wolfe

Sign in / Sign up

Export Citation Format

Share Document