Research On Remote Monitoring Method Of Smart Classroom Based On Internet Of Things

Author(s):  
Dacong Jiang N.A.
Author(s):  
Kai Zhang

With the development of emerging technology innovations such as the internet of things, classroom management has also shown an informatization trend. Among them, smart classrooms are an important part of the current university information environment construction. The purpose of this article is to build a smart classroom into an intelligent teaching environment with many functions such as intelligent perception and identification, real-time monitoring based on the internet of things technology and cloud computing technology. A questionnaire survey was conducted among freshman students in some majors, and interviews were conducted with the instructors. It was found that 92.19% of the students were satisfied with the classroom learning in the smart classroom environment, and most teachers thought that the teaching effect had been improved. Experiments have proven that the operation of smart classrooms based on the internet of things and cloud computing realizes the intelligence of teaching management services and improves the level of education informationization in schools.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771772181 ◽  
Author(s):  
Seok-Woo Jang ◽  
Gye-Young Kim

This article proposes an intelligent monitoring system for semiconductor manufacturing equipment, which determines spec-in or spec-out for a wafer in process, using Internet of Things–based big data analysis. The proposed system consists of three phases: initialization, learning, and prediction in real time. The initialization sets the weights and the effective steps for all parameters of equipment to be monitored. The learning performs a clustering to assign similar patterns to the same class. The patterns consist of a multiple time-series produced by semiconductor manufacturing equipment and an after clean inspection measured by the corresponding tester. We modify the Line, Buzo, and Gray algorithm for classifying the time-series patterns. The modified Line, Buzo, and Gray algorithm outputs a reference model for every cluster. The prediction compares a time-series entered in real time with the reference model using statistical dynamic time warping to find the best matched pattern and then calculates a predicted after clean inspection by combining the measured after clean inspection, the dissimilarity, and the weights. Finally, it determines spec-in or spec-out for the wafer. We will present experimental results that show how the proposed system is applied on the data acquired from semiconductor etching equipment.


Author(s):  
Mohammad Woli Ullah ◽  
Mohammad Golam Mortuza ◽  
Md Humayun Kabir ◽  
Zia Uddin Ahmed ◽  
Sovan Kumar Dey Supta ◽  
...  

Author(s):  
Varsha Sharma ◽  
Vivek Sharma ◽  
Nishchol Mishra

Recently, Internet of Things (IoT) has aroused great interest among the educational, scientific research, and industrial communities. Researchers affirm that IoT environments will make people's daily life easier and will lead to superior services, great savings as well as a nifty use of resources. Consequently, IoT merchandise and services will grow exponentially in the upcoming years. The basic idea of IoT is to connect physical objects to the Internet and use that connection to provide some kind of useful remote monitoring or control of those objects. The chapter presents the overall IoT vision, the technologies for achieving it, IoT challenges and its applications. This chapter also attempts to describe and analyze threat types for privacy, security and trust in IoT as well as shows how big data is an important factor in IoT. This chapter will expose the readers and researchers who are interested in exploring and implementing the IoT and related technologies to the progress towards the bright future of the Internet of Things


Author(s):  
Itamir Barroca ◽  
Gibeon Aquino ◽  
Maria Alzete Lima

The high cost of healthcare services, the aging population and the increase of chronic disease is becoming a global concern. Several studies have indicated the need to minimize the process of hospitalization and the high cost of patient care. A promising trend in healthcare is to move the routines of medical checks from a hospital to the patient's home. Moreover, recent advances in microelectronics have boosted the advent of a revolutionary model involving systems and communication technology. This new paradigm, the Internet of Things (IoT), has a broad applicability in several areas, including healthcare. Based on this context, this chapter aims to describe a computer platform based on IoT for the remote monitoring of patients in critical condition. Furthermore, it is planned to approach the current advances and challenges of conceiving and developing a set of technology-centric, targeting issues relevant to underdeveloped countries, particularly in regards to Brazil's health infrastructure.


Author(s):  
Wael Mohammad Alenazy

The integration of internet of things, artificial intelligence, and blockchain enabled the monitoring of structural health with unattended and automated means. Remote monitoring mandates intelligent automated decision-making capability, which is still absent in present solutions. The proposed solution in this chapter contemplates the architecture of smart sensors, customized for individual structures, to regulate the monitoring of structural health through stress, strain, and bolted joints looseness. Long range sensors are deployed for transmitting the messages a longer distance than existing techniques. From the simulated results, different sensors record the monitoring information and transmit to the blockchain platform in terms of pressure points, temperature, pre-tension force, and the architecture deems the criticality of transactions. Blockchain platform will also be responsible for storage and accessibility of information from a decentralized medium, automation, and security.


Sign in / Sign up

Export Citation Format

Share Document