Automatic assessment of foetal biometric parameter using GVF snakes

Author(s):  
Vidhi Rawat ◽  
Alok Jain ◽  
Vibhakar Shrimali ◽  
Abhishek Rawat
2014 ◽  
Vol 59 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Norbert Skoczylas

Abstract The Author endeavored to consult some of the Polish experts who deal with assessing and preventing outburst hazards as to their knowledge and experience. On the basis of this knowledge, an expert system, based on fuzzy logic, was created. The system allows automatic assessment of outburst hazard. The work was completed in two stages. The first stage involved researching relevant sources and rules concerning outburst hazard, and, subsequently, determining a number of parameters measured or observed in the mining industry that are potentially connected with the outburst phenomenon and can be useful when estimating outburst hazard. Then, the Author contacted selected experts who are actively involved in preventing outburst hazard, both in the industry and science field. The experts were anonymously surveyed, which made it possible to select the parameters which are the most essential in assessing outburst hazard. The second stage involved gaining knowledge from the experts by means of a questionnaire-interview. Subjective opinions on estimating outburst hazard on the basis of the parameters selected during the first stage were then systematized using the structures typical of the expert system based on fuzzy logic.


Author(s):  
Nikoletta Bassiou ◽  
Andreas Tsiartas ◽  
Jennifer Smith ◽  
Harry Bratt ◽  
Colleen Richey ◽  
...  

Author(s):  
Kamini Sabu ◽  
Prakhar Swarup ◽  
Hitesh Tulsiani ◽  
Preeti Rao

Author(s):  
Kristofer Montazeri ◽  
Sigurdur Aegir Jonsson ◽  
Jon Skirnir Agustsson ◽  
Marta Serwatko ◽  
Thorarinn Gislason ◽  
...  

Abstract Purpose Evaluate the effect of respiratory inductance plethysmography (RIP) belt design on the reliability and quality of respiratory signals. A comparison of cannula flow to disposable cut-to-fit, semi-disposable folding and disposable RIP belts was performed in clinical home sleep apnea testing (HSAT) studies. Methods This was a retrospective study using clinical HSAT studies. The signal reliability of cannula, thorax, and abdomen RIP belts was determined by automatically identifying periods during which the signals did not represent respiratory airflow and breathing movements. Results were verified by manual scoring. RIP flow quality was determined by examining the correlation between the RIP flow and cannula flow when both signals were considered reliable. Results Of 767 clinical HSAT studies, mean signal reliability of the cut-to-fit, semi-disposable, and disposable thorax RIP belts was 83.0 ± 26.2%, 76.1 ± 24.4%, and 98.5 ± 9.3%, respectively. The signal reliability of the cannula was 92.5 ± 16.1%, 87.0 ± 23.3%, and 85.5 ± 24.5%, respectively. The automatic assessment of signal reliability for the RIP belts and cannula flow had a sensitivity of 50% and a specificity of 99% compared with manual assessment. The mean correlation of cannula flow to RIP flow from the cut-to-fit, semi-disposable, and disposable RIP belts was 0.79 ± 0.24, 0.52 ± 0.20, and 0.86 ± 0.18, respectively. Conclusion The design of RIP belts affects the reliability and quality of respiratory signals. The disposable RIP belts that had integrated contacts and did not fold on top of themselves performed the best. The cut-to-fit RIP belts were most likely to be unreliable, and the semi-disposable folding belts produced the lowest-quality RIP flow signals compared to the cannula flow signal.


Cybersecurity ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Tiago Espinha Gasiba ◽  
Ulrike Lechner ◽  
Maria Pinto-Albuquerque

AbstractSoftware vulnerabilities, when actively exploited by malicious parties, can lead to catastrophic consequences. Proper handling of software vulnerabilities is essential in the industrial context, particularly when the software is deployed in critical infrastructures. Therefore, several industrial standards mandate secure coding guidelines and industrial software developers’ training, as software quality is a significant contributor to secure software. CyberSecurity Challenges (CSC) form a method that combines serious game techniques with cybersecurity and secure coding guidelines to raise secure coding awareness of software developers in the industry. These cybersecurity awareness events have been used with success in industrial environments. However, until now, these coached events took place on-site. In the present work, we briefly introduce cybersecurity challenges and propose a novel platform that allows these events to take place online. The introduced cybersecurity awareness platform, which the authors call Sifu, performs automatic assessment of challenges in compliance to secure coding guidelines, and uses an artificial intelligence method to provide players with solution-guiding hints. Furthermore, due to its characteristics, the Sifu platform allows for remote (online) learning, in times of social distancing. The CyberSecurity Challenges events based on the Sifu platform were evaluated during four online real-life CSC events. We report on three surveys showing that the Sifu platform’s CSC events are adequate to raise industry software developers awareness on secure coding.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2940
Author(s):  
Luciano Ortenzi ◽  
Simone Figorilli ◽  
Corrado Costa ◽  
Federico Pallottino ◽  
Simona Violino ◽  
...  

The degree of olive maturation is a very important factor to consider at harvest time, as it influences the organoleptic quality of the final product, for both oil and table use. The Jaén index, evaluated by measuring the average coloring of olive fruits (peel and pulp), is currently considered to be one of the most indicative methods to determine the olive ripening stage, but it is a slow assay and its results are not objective. The aim of this work is to identify the ripeness degree of olive lots through a real-time, repeatable, and objective machine vision method, which uses RGB image analysis based on a k-nearest neighbors classification algorithm. To overcome different lighting scenarios, pictures were subjected to an automatic colorimetric calibration method—an advanced 3D algorithm using known values. To check the performance of the automatic machine vision method, a comparison was made with two visual operator image evaluations. For 10 images, the number of black, green, and purple olives was also visually evaluated by these two operators. The accuracy of the method was 60%. The system could be easily implemented in a specific mobile app developed for the automatic assessment of olive ripeness directly in the field, for advanced georeferenced data analysis.


2021 ◽  
pp. 136216882110335
Author(s):  
Mahmoud Abdi Tabari ◽  
Gavin Bui ◽  
Yizhou Wang

Focusing on the relationship between linguistic, cognitive, socioemotional factors in writing English for academic purposes (EAP), this study investigated whether topic familiarity as an important cognitive factor of task complexity influences different levels of emotionality and linguistic complexity in EAP writing and whether there are relationships between emotionality and linguistic complexity. To do so, 64 international graduate learners enrolled in EAP writing courses participated in the present study. Each wrote on familiar and unfamiliar topics determined via a questionnaire at the onset of the study. Their writings were then measured for textual emotionality and linguistic complexity using automatic assessment tools. Results showed that EAP writings differed systematically in terms of both emotionality and linguistic complexity due to the influence of topic familiarity. Unfamiliar topics led to writing performance with a significantly higher level of emotional negativity and significantly lower linguistic complexity levels as compared to familiar topics. A follow-up correlation analysis also revealed significant relationships between emotionality and linguistic complexity measures, indicating complex interactions between linguistic and socioemotional factors. Implications of these findings are discussed relative to deploying writing topics with varied levels of cognitive complexity for encouraging classroom engagement and improving L2 learners’ writing performance by effective task sequencing.


2021 ◽  
pp. 026553222110361
Author(s):  
Chao Han

Over the past decade, testing and assessing spoken-language interpreting has garnered an increasing amount of attention from stakeholders in interpreter education, professional certification, and interpreting research. This is because in these fields assessment results provide a critical evidential basis for high-stakes decisions, such as the selection of prospective students, the certification of interpreters, and the confirmation/refutation of research hypotheses. However, few reviews exist providing a comprehensive mapping of relevant practice and research. The present article therefore aims to offer a state-of-the-art review, summarizing the existing literature and discovering potential lacunae. In particular, the article first provides an overview of interpreting ability/competence and relevant research, followed by main testing and assessment practice (e.g., assessment tasks, assessment criteria, scoring methods, specificities of scoring operationalization), with a focus on operational diversity and psychometric properties. Second, the review describes a limited yet steadily growing body of empirical research that examines rater-mediated interpreting assessment, and casts light on automatic assessment as an emerging research topic. Third, the review discusses epistemological, psychometric, and practical challenges facing interpreting testers. Finally, it identifies future directions that could address the challenges arising from fast-changing pedagogical, educational, and professional landscapes.


Sign in / Sign up

Export Citation Format

Share Document