scholarly journals Struct-NB: predicting protein-RNA binding sites using structural features

Author(s):  
Fadi Towfic ◽  
Cornelia Caragea ◽  
David C. Gemperline ◽  
Drena Dobbs ◽  
Vasant Honavar
2014 ◽  
Vol 42 (15) ◽  
pp. 10086-10098 ◽  
Author(s):  
Songling Li ◽  
Kazuo Yamashita ◽  
Karlou Mar Amada ◽  
Daron M. Standley

Abstract Increasing awareness of the importance of protein–RNA interactions has motivated many approaches to predict residue-level RNA binding sites in proteins based on sequence or structural characteristics. Sequence-based predictors are usually high in sensitivity but low in specificity; conversely structure-based predictors tend to have high specificity, but lower sensitivity. Here we quantified the contribution of both sequence- and structure-based features as indicators of RNA-binding propensity using a machine-learning approach. In order to capture structural information for proteins without a known structure, we used homology modeling to extract the relevant structural features. Several novel and modified features enhanced the accuracy of residue-level RNA-binding propensity beyond what has been reported previously, including by meta-prediction servers. These features include: hidden Markov model-based evolutionary conservation, surface deformations based on the Laplacian norm formalism, and relative solvent accessibility partitioned into backbone and side chain contributions. We constructed a web server called aaRNA that implements the proposed method and demonstrate its use in identifying putative RNA binding sites.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lichao Zhang ◽  
Zihong Huang ◽  
Liang Kong

Background: RNA-binding proteins establish posttranscriptional gene regulation by coordinating the maturation, editing, transport, stability, and translation of cellular RNAs. The immunoprecipitation experiments could identify interaction between RNA and proteins, but they are limited due to the experimental environment and material. Therefore, it is essential to construct computational models to identify the function sites. Objective: Although some computational methods have been proposed to predict RNA binding sites, the accuracy could be further improved. Moreover, it is necessary to construct a dataset with more samples to design a reliable model. Here we present a computational model based on multi-information sources to identify RNA binding sites. Method: We construct an accurate computational model named CSBPI_Site, based on xtreme gradient boosting. The specifically designed 15-dimensional feature vector captures four types of information (chemical shift, chemical bond, chemical properties and position information). Results: The satisfied accuracy of 0.86 and AUC of 0.89 were obtained by leave-one-out cross validation. Meanwhile, the accuracies were slightly different (range from 0.83 to 0.85) among three classifiers algorithm, which showed the novel features are stable and fit to multiple classifiers. These results showed that the proposed method is effective and robust for noncoding RNA binding sites identification. Conclusion: Our method based on multi-information sources is effective to represent the binding sites information among ncRNAs. The satisfied prediction results of Diels-Alder riboz-yme based on CSBPI_Site indicates that our model is valuable to identify the function site.


2018 ◽  
Vol 2018 (12) ◽  
pp. pdb.top097931 ◽  
Author(s):  
Jennifer C. Darnell ◽  
Aldo Mele ◽  
Ka Ying Sharon Hung ◽  
Robert B. Darnell

2008 ◽  
Vol 9 (Suppl 12) ◽  
pp. S6 ◽  
Author(s):  
Cheng-Wei Cheng ◽  
Emily Su ◽  
Jenn-Kang Hwang ◽  
Ting-Yi Sung ◽  
Wen-Lian Hsu

2019 ◽  
Vol 294 (13) ◽  
pp. 5023-5037 ◽  
Author(s):  
Subbiah Jeeva ◽  
Sheema Mir ◽  
Adrain Velasquez ◽  
Jacquelyn Ragan ◽  
Aljona Leka ◽  
...  

2016 ◽  
Vol 61 ◽  
pp. S11-S12
Author(s):  
E. Larrea ◽  
M. Fernandez-Mercado ◽  
I. Ceberio ◽  
J.A. Guerra-Assunção ◽  
J. Okosun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document