Experimental measurement and modelling of surface roughness in turning with CaF2 solid lubricant assisted minimum quantity lubrication

Author(s):  
Mayurkumar A. Makhesana ◽  
Kaushik M. Patel
Procedia CIRP ◽  
2016 ◽  
Vol 40 ◽  
pp. 138-143 ◽  
Author(s):  
Uma Maheshwera Reddy Paturi ◽  
Yesu Ratnam Maddu ◽  
Ramalinga Reddy Maruri ◽  
Suresh Kumar Reddy Narala

2011 ◽  
Vol 181-182 ◽  
pp. 1013-1017
Author(s):  
Ru Ting Xia

The present study show that metal cutting fluids changes the machinability because of their lubrication and cooling in turning 1Cr18Ni9Ti steel under minimum quantity lubrication (MQL) Machining. The experiments compares the mechanical performance of MQL to completely dry lubrication for the turning of 1Cr18Ni9Ti steel based on experimental measurement of cutting temperature, cutting forces, surface roughness, and dimensional deviation. Results indicated that the use of near dry lubrication leads to lower cutting temperature and cutting force, favorable chip-tool interaction, reduced tool wears, surface roughness, and dimensional deviation.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771061 ◽  
Author(s):  
Duc Tran Minh ◽  
Long Tran The ◽  
Ngoc Tran Bao

In this article, an attempt has been made to explore the potential performance of Al2O3 nanoparticle–based cutting fluid in hard milling of hardened 60Si2Mn steel (50-52 HRC) under different minimum quantity lubrication conditions. The comparison of hard milling under minimum quantity lubrication conditions is done between pure cutting fluids and nanofluids (in terms of surface roughness, cutting force, tool wear, and tool life). Hard milling under minimum quantity lubrication conditions with nanofluid Al2O3 of 0.5% volume has shown superior results. The improvement in tool life almost 177%–230% (depending on the type of nanofluid) and the reduction in surface roughness and cutting forces almost 35%–60% have been observed under minimum quantity lubrication with Al2O3 nanofluids due to better tribological behavior as well as cooling and lubricating effects. The most outstanding result is that the uncoated cemented carbide insert can be effectively used in machining high-hardness steels (>50 HRC) while maintaining long tool life and good surface integrity (Ra = 0.08–0.35 µm; Rz = 0.5–2.0 µm, equivalent to finish grinding) rather than using the costlier tools like coated carbide, ceramic, and (P)CBN. Therefore, using hard nanoparticle–reinforced cutting fluid under minimum quantity lubrication conditions in practical manufacturing becomes very promising.


Sign in / Sign up

Export Citation Format

Share Document